DOI: 10.1002/ejoc.200700887

Regioselective Synthesis of Fluorinated Phenols, Biaryls, 6H-Benzo[c]chromen-6-ones and Fluorenones Based on Formal [3+3] Cyclizations of 1,3-Bis(silyl enol ethers)

Ibrar Hussain, [a] Mirza Arfan Yawer, [a] Matthias Lau, [a] Thomas Pundt, [a] Christine Fischer, [b] Helmar Görls, [c] and Peter Langer*[a,b]

Keywords: Arenes / Cyclizations / Organic fluoro compounds / Silyl enol ethers / Regioselectivity

A variety of fluorinated phenols, biaryls, 6H-benzo[c]chromen-6-ones and fluorenones were prepared based on regioselective [3+3] cyclizations of 1,3-bis(silyl enol ethers) with 2-fluoro-3-silyloxy-2-en-1-ones.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008)

Introduction

The fluoro group represents, due to its unique stereoelectronic properties, a very important substituent in organic and medicinal chemistry.^[1] While the fluorine atom is relatively small, its high electronegativity results in a dramatic change of the electronic situation and of the reactivity of the molecule. This plays an important role in drug-receptor interactions. Notably, the increased lipophilicity of fluorosubstituted molecules also improves their transport in vivo. It is noteworthy that, due to the high chemical and biological stability of the fluoro group, undesirable metabolic transformations are often avoided. Therefore, the synthesis of fluoro-substituted arenes and hetarenes plays an important role in drug discovery.[1,2] A great variety of pharmaceuticals, such as well known ciprofloxacin, ofloxacin, and norfloxacin, contain a fluoroarene moiety.[3] Aryl fluorides are also present in natural products. This includes, for example, 4-fluorozaragozic acid A or fluorinated carbazole alkaloids.^[4] Organic fluoro compounds show very good solubility in fluorophilic solvents. Therefore, they are used as ligands^[5] for catalytic reactions in fluorous biphasic systems and supercritical carbon dioxide.^[6] The unique electronic properties of fluorinated arenes are used also for applications in organocatalysis.^[7,8]

Aryl fluorides are available by reaction of arenes with strong electrophilic fluorination agents (such as fluorine or xenon fluorides).^[9] However, these reagents are difficult to

Lessingstraße 8, 07743 Jena, Germany

obtain or handle, dangerous, or (in some cases) very expensive. Selectfluor represents an "easy-to-handle", commercially available electrophilic fluorination agent.^[10] However, the fluorination of non-activated arenes was reported to be unsuccessful (low conversion).[10,11] The fluorination of (activated) anisole has been reported to proceed with 72% conversion. However, a 1:1 regioisomeric mixture of 2- and 4-fluoroanisol was formed.[11] The reaction of Selectfluor with phenols has been reported to give 4-fluorocyclohexadienones.[12] The functionalization of simple fluorinated arenes, such as 4-fluorophenol, by electrophilic substitution reactions has been widely explored. [13] However, these transformations are often low-yielding and proceed with low regioselectivity. In addition, the synthesis of heavily substituted benzene derivatives is not an easy task. A different approach to aryl fluorides relies on cyclization reactions of fluorinated synthetic building blocks. For example, aryl fluorides were prepared by [4+2] cycloaddition reactions of 2-fluoro-1-methoxy-3-(trimethylsilyloxy)-1,3butadiene, 2-fluoro-3-methoxybuta-1,3-diene and related dienes with alkenes or alkynes.^[14] Portella et al. reported the synthesis of fluorophenols by annulation reactions of 2,2-difluoro-1,5-diketones which were prepared from acylsilanes, trimethyl(trifluoromethyl)silane and enones.[15]

The formal [3+3] cyclization of 1,3-bis(silyl enol ethers) with 1,3-dielectrophiles, first reported by Chan and coworkers, [16] provides a convenient approach to various arenes.[17,18] Recently, we reported the application of this method to the synthesis of aryl fluorides based on [3+3] cyclizations of 1,3-bis(silyl enol ethers) with 2-fluoro-3-(silyloxy)-2-en-1-ones.^[19] Herein we report full details of these studies. With regard to our preliminary communication, the preparative scope was considerably extended. In addition, we wish to report the application of our methodology to the synthesis of fluorinated 6*H*-benzo[*c*]chromen-6-ones (biaryl

[[]a] Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany Fax: +49-381-498-6411 E-mail: peter.langer@uni-rostock.de

[[]b] Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany

Institut für Anorganische und Analytische Chemie, Universität

lactones, dibenzo[b,d]pyran-6-ones) and fluorenones. The chemistry outlined herein offers a convenient and regioselective approach to a variety of functionalised and sterically encumbered aryl fluorides which are not readily available by other methods.

Results and Discussion

2-Fluoro-1,3-diones are available by reaction of 1,3-diketones with fluorine, [20] N-fluorobis(trifluoromethyl)sulfonimide, [21] and Selectfluor. [22] Our starting point was the synthesis of a variety of novel 2-fluoro-1,3-diones that were required for our studies. The reaction of Selectfluor with 1,3-diones 1a-k afforded the 2-fluoro-1,3-diones 2a-k, which were transformed by reaction with Me₃SiCl/NEt₃, into the 2-fluoro-3-(silyloxy)-2-en-1-ones 3a-k (Scheme 1, Table 1). The TiCl₄-mediated formal [3+3] cyclization of 3a-k with 1,3-bis(silyl enol ethers) 4a-g, prepared from the corresponding 1,3-dicarbonyl compounds in one or two steps^[23], afforded the novel fluorinated phenols and biaryls 5a-ai in moderate to good yields.

Scheme 1. Synthesis of fluorinated phenols and biaryls **5a–ai**; conditions: i: method A: Selectfluor, microwave, 10 min, 82 °C, CH₃CN; method B: reflux, 4 h; ii: Me₃SiCl, NEt₃, C₆H₆, 20 °C; iii: TiCl₄, CH₂Cl₂, $-78 \rightarrow 20$ °C.

The best yields were obtained when the reaction was carried out in high concentration. The use of Me₃SiOTf or BF₃·OEt₂, rather than TiCl₄, was unsuccessful (no conversion or decomposition, respectively). Notably, products 5iai were formed with excellent regioselectivity. The formation of the opposite regioisomer could not be detected. The results can be explained by the following mechanism:[16,18] Silyl enol ether 3 undergoes a TiCl₄-mediated 1,5-silyl shift to give intermediate A. The TiCl₄-mediated conjugate addition of the 1,3-bis(silyl enol ether) 4 onto A gives intermediate **B** (Mukaiyama–Michael reaction). The cyclization proceeds by attack of the central carbon of 4 onto the carbonyl group (Mukaiyama aldol reaction). Aromatization by an elimination reaction (before or during the aqueous workup) leads to the final product. The yields seem to mainly depend on the quality of the starting materials and on the handling of each individual experiment. The structures of 5y and 5z were independently confirmed by X-ray crystal structure analysis (see Figures 1 and 2).[24]

6H-Benzo[c]chromen-6-ones (dibenzo[b,d]pyran-6-ones, biaryl lactones) are of considerable pharmacological relevance and occur in various natural products. This includes, for example, autumnariol, [25] autumnariniol, [26] ternariol, [27] or altenusiol. [28] 6H-Benzo[c]chromen-6-ones represent specific inhibitors of the growth of endothelial cells[29] and estrogen receptors.[30] Ellagic acid and coruleoellagic acid, isolated both as glycosides and aglycons, contain an additional lactone bridge.[31] Dibenzo[c,d]chromen-6-ones (benzo[d]naphthopyran-6-ones) can be regarded as benzo-annulated 6H-benzo[c]chromen-6-ones. They are present in a number of antibiotics and antitumor agents which have been isolated from Streptomyces (e.g. the gilvocarcins, chrysomycins and ravidomycins).[32] Recently, we reported the synthesis of 6H-benzo[c]chromen-6-ones by reaction of 1,3-bis(silyl enol ethers) with benzopyrylium triflates.^[33] A recent approach to 6*H*-benzo[*c*]chromen-6-ones relies on the [3+3] cyclizations of 1,3-bis(silyl enol ethers) with 1-(2-methoxyphenyl)-1-(trimethylsilyloxy)alk-1-en-3ones, and subsequent lactonization.[34] The combination of this method with the chemistry reported herein provides a convenient access to 10-fluoro-6*H*-benzo[*c*]chromen-6-ones. The synthesis of this type of fluorinated core structure has, to the best of our knowledge, not yet been reported. Treatment of biaryls 5m-r with BBr₃ and subsequent addition of an aqueous solution of potassium tert-butoxide (KOtBu) afforded the novel fluorinated dibenzo[b,d]pyran-6-ones 6af (Scheme 2, Table 2). The formation of the products proceeds by cleavage of the arylmethyl ether and subsequent base-mediated lactonization. The structure of 6d was investigated by crystal structure analysis.^[35]

1-Hydroxyfluorenones are interesting lead structures in medicinal chemistry and are also present in nature (e.g. in the natural products dengibsin, dengibsinin, and dendroflorin). [36] Fluorinated fluorenones[37] are of specific interest in current medicinal chemistry. For example, it was shown that 4-fluorofluorenones possess antagonistic in vitro activity to human progesterone receptor B (hPR-B) in cotransfected CV-1 cells (IC₅₀ = 158 nM). [38] Recently, we re-

Table 1. Synthesis of 4-fluorophenols 5a-ai.

4	1,2,3	5	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	% Yield 2 ^[a]	% Yield 3[a]	% Yield 5[a]
a	a	a	Et	Et	Н	OMe	71	98	54
b	a	b	Et	Et	Н	OEt			42
d	a	c	Et	Et	Н	Me			50
e	a	d	Et	Et	Н	Ph			52
a	b	e	Ph	Ph	Н	OMe	77	89	82
b	b	f	Ph	Ph	Н	OEt			68
d	b	\mathbf{g}	Ph	Ph	Н	Me			30
c	b	h	Ph	Ph	Н	$O(CH_2)_2OMe$			51
a	c	i	Me	Ph	Н	OMe	88	98	40
c	c	j	Me	Ph	Н	$O(CH_2)_2OMe$			42
d	c	k	Me	Ph	Н	Me			31
e	c	l	Me	Ph	Н	Ph			40
a	d	m	Me	2-(MeO)C ₆ H ₄	Н	OMe	72	99	44
f	d	n	Me	2-(MeO)C ₆ H ₄	Me	OMe			54
\mathbf{g}	d	0	Me	2-(MeO)C ₆ H ₄	Et	OEt			44
a	e	p	nPr	2-(MeO)C ₆ H ₄	Н	OMe	90	79	35
f	e	q	nPr	2-(MeO)C ₆ H ₄	Me	OMe			34
\mathbf{g}	e	r	nPr	2-(MeO)C ₆ H ₄	Et	OEt			55
a	f	S	Me	$2\text{-MeC}_6\text{H}_4$	Н	OMe	46	65	44
\mathbf{g}	f	t	Me	$2\text{-MeC}_6\text{H}_4$	Et	OEt			40
a	\mathbf{g}	u	Me	$2-C1C_6H_4$	Н	OMe	42	80	26
f	g	v	Me	$2-C1C_6H_4$	Me	OMe			38
\mathbf{g}	g	w	Me	$2-C1C_6H_4$	Et	OEt			38
a	h	X	Me	$4-ClC_6H_4$	Н	OMe	58	70	30
f	h	y	Me	$4-ClC_6H_4$	Me	OMe			32
\mathbf{g}	h	Z	Me	$4-C1C_6H_4$	Et	OEt			44
a	i	aa	Me	$4-FC_6H_4$	Н	OMe	46	82	32
f	i	ab	Me	$4-FC_6H_4$	Me	OMe			40
\mathbf{g}	i	ac	Me	$4-FC_6H_4$	Et	OEt			35
a	j	ad	Me	1-naphthoyl	Н	OMe	37	71	31
f	j	ae	Me	1-naphthoyl	Me	OMe			37
\mathbf{g}	j	af	Me	1-naphthoyl	Et	OEt			42
a	k	ag	nPr	2-naphthoyl	Н	OMe	64	74	30
f	k	ah	nPr	2-naphthoyl	Me	OMe			34
\mathbf{g}	k	ai	nPr	2-naphthoyl	Et	OEt			35

[a] Isolated yields.

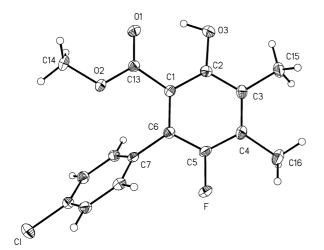


Figure 1. ORTEP plot of 5y.

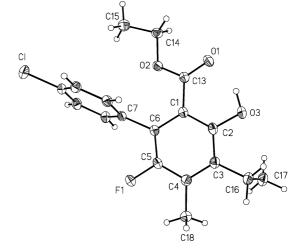


Figure 2. ORTEP plot of 5z.

ported a new approach to fluorenones based on Suzuki cross-coupling reactions of salicylates and subsequent acid-mediated Friedel–Crafts-type acylation.^[39] Chan et al. re-

ported the synthesis of 1-hydroxy-3-methylfluorenone by reaction of methyl 6-phenylsalicylate with concentrated sulfuric acid.^[16]

Scheme 2. Synthesis of dibenzo[b,d]pyran-6-ones **6a–f**; conditions: i: 1) BBr₃ (4 equiv.), CH₂Cl₂, $0 \rightarrow 20$ °C, 18 h, 2) KOtBu, H₂O, 15 min, 20 °C.

Table 2. Synthesis of dibenzo[b,d]pyran-6-ones **6a**–**f**.

5	6	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	% Yield 6[a]
m	a	Me	Н	Me	91
n	b	Me	Me	Me	84
0	c	Me	Et	Et	75
p	d	nPr	Н	Me	47
q	e	nPr	Me	Me	55
r	f	nPr	Et	Et	67

[a] Isolated yields.

The combination of the Friedel–Crafts reaction with the chemistry reported herein provides a convenient approach to a variety of functionalized 4-fluorofluorenones which are not readily available by other methods. In fact, the novel 1-hydroxy-4-fluorofluorenones **7a**–**d** were obtained in good yields by simple treatment of 6-arylsalicylates **5x**,**y**,**ab**,**ac** with concentrated sulfuric acid (Scheme 3, Table 3).

OH O OH O OH O OH O
$$\mathbb{R}^3$$
 \mathbb{R}^3 \mathbb{R}^4 \mathbb{R}^2 \mathbb{R}^2 \mathbb{R}^2 \mathbb{R}^2 \mathbb{R}^2 \mathbb{R}^2

Scheme 3. Synthesis of fluorenones 7a-d; conditions: i: concd. H_2SO_4 , 20 °C, 1 h.

Table 3. Synthesis of fluorenones 7a-d.

5	7	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R ⁴	% Yield 7 ^[a]
X	a	Me	Cl	Н	Me	77
y	b	Me	C1	Me	Me	75
ab	c	Me	F	Me	Me	74
ac	d	Me	F	Et	Et	69

[a] Isolated yields.

Conclusions

In conclusion, we have reported the synthesis of variety of fluorinated phenols, biaryls, 6H-benzo[c]chromen-6-ones and fluorenones based on regioselective [3+3] cyclizations of 1,3-bis(silyl enol ethers) with 2-fluoro-3-(silyloxy)-2-enl-ones. The reactions provide a convenient approach to various fluorinated arenes which are not readily available by other methods. The starting materials are readily available by fluorination of 1,3-diketones with Selectfluor.

Experimental Section

General: ¹H NMR spectra were taken in CDCl₃ at 250, 300, or 500 MHz. ¹³C NMR spectra were taken in CDCl₃ at 62.5, 75, or 125 MHz. Chemical shifts are reported in parts per million using the solvent as internal standard (chloroform, $\delta = 7.26$ and 77.0 ppm, respectively). Infrared spectra were recorded with an FTIR spectrometer. Mass spectrometric data (MS) were obtained by electron ionization (EI, 70 eV), chemical ionization (CI, isobutane) or electrospray ionization (ESI). Melting points are uncorrected. CH₂Cl₂ (anhydrous, 99.8%) was purchased directly from ACROS and used without further purification, TiCl4 was purchased from Aldrich. Analytical thin-layer chromatography was performed on 0.20 mm 60 A silica gel plates. Column chromatography was performed on 60-Å silica gel (60–200 mesh). All cyclization reactions were carried out in Schlenk tubes under argon using dried solvents. Crystallographic data were collected with a Bruker Apex-X8 with Mo- K_{α} radiation ($\lambda = 0.71073 \text{ Å}$). The structures were solved by direct methods using SHELXS-97 and refined against F^2 on all data by full-matrix least-squares with SHELXL-97. All non-hydrogen atoms were refined anisotropically; all hydrogen atoms were refined in the model at geometrically calculated positions and refined using a riding model.

General Procedure for the Synthesis of 1,3-Dicarbonyl Compounds 1: To a stirred solution of LDA (75 mmol) in THF (1.2 mL/l mmol of LDA) was added the ketone (50 mmol) at –78 °C. After the solution was stirred for 1 h, the acid chloride (60 mmol) was added. The temperature of the solution was allowed to rise to 20 °C during 12 h. A saturated solution of NH₄Cl was added, the layers were separated, and the aqueous layer was extracted with ethyl acetate (3 × 50 mL). The combined organic layers were dried (Na₂So₄) and filtered, and the solvent was removed in vacuo. The residue was purified by chromatography (silica gel, *n*-heptane/EtOAc, $30:1 \rightarrow 20:1$) to give 1. Compounds 1a–c are commercially available. The syntheses of 1d, [40] 1e, [41] 1f, [42] 1h, [43] and 1i, [44] have been previously reported.

4-(2-Chlorophenyl)-4-hydroxy-3-buten-2-one (**1g**): Starting with LDA (75 mmol), acetone (2.904 g, 50.0 mmol) and 2-chlorobenzoyl chloride (10.501 g, 60.0 mmol) in THF (62.5 mL), **1g** (2.514 g, 25%) was isolated as a yellowish oil. ¹H NMR (300 MHz, CDCl₃): δ = 2.09 (s, 3 H, CH₃), 5.95 (s, 1 H, CH), 7.23 (m, 1 H, CH_{ClPh}), 7.27 (m, 1 H, CH_{ClPh}), 7.32 (m, 1 H, CH_{ClPh}), 7.48 (m, 1 H, CH_{ClPh}), 15.64 (br. s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 25.8 (CH₃), 102.2 (CH), 127.4, 130.3 (CH_{ClPh}), 130.6 (C_{ClPh}), 131.1, 132.1 (CH_{ClPh}), 135.9 (C_{ClPh}), 185.0 (COH), 193.1 (COCH₃) ppm. IR (neat): \hat{v} = 2964 (w), 1762 (m), 1602 (s), 1434 (s), 1291 (m), 1099 (m), 1046 (s), 952 (m), 766 (s), 535 (w) cm⁻¹. MS (EI, 70 eV): m/z (%) = 196 (³⁷Cl, 1) [M]⁺, 181 (10), 161 (100), 139 (26), 111 (11), 85 (9), 75 (10), 69 (15), 43 (13). HRMS (EI): calcd. for C₁₀H₉ClO₂ ([M]⁺, ³⁵Cl) 196.02856; found 196.02830.

4-Hydroxy-4-(1-naphthyl)-3-buten-2-one (1j): Starting with LDA (65.5 mmol), acetone (2.904 g, 50.0 mmol) and 1-naphthoyl chloride (11.400 g, 60.0 mmol) in THF (62.5 mL), **1j** (4.563 g, 43%) was isolated as a yellow viscous oil. ¹H NMR (300 MHz, CDCl₃): δ = 2.23 (s, 3 H, COCH₃), 6.14 (s, 1 H, CH), 7.45–7.62 (m, 4 H, CH_{Naph}), 7.88–8.07 (m, 2 H, CH_{Naph}), 8.48–8.52 (m, 1 H, CH_{Naph}), 16.14 (br. s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 25.8 (COCH₃), 97.4 (CH), 125.1, 125.2, 126.7, 126.8, 127.7, 128.9 (CH_{Naph}), 130.5 (C_{Naph}), 132.4 (CH_{Naph}), 134.2, 134.6 (C_{Naph}), 189.6 (COH), 197.3 (COCH₃) ppm. IR (neat): \tilde{v} = 2927 (w), 1745 (s), 1715 (s), 1590 (s), 1472 (m), 1435 (s), 1360 (m), 1292 (s), 1254 (m), 1119 (m), 1053 (m), 964 (w), 845 (w), 765 (m), 742 (m), 606 (w) cm⁻¹. MS (EI, 70 eV): m/z (%) = 212 (99) [M]⁺, 197 (56), 179

(43), 169 (72), 155 (85), 141 (26), 127 (100), 115 (14), 101 (9), 85 (18), 77 (14), 69 (31), 63 (9), 51 (6), 43 (27).

1-Hydroxy-1-(2-naphthyl)-1-hexen-3-one (1k): Starting with LDA (65.5 mmol), 2-pentanone (4.306 g, 50.0 mmol) and 2-naphthoyl chloride (11.400 g, 60.0 mmol) in THF (62.5 mL), 1k (7.449 g, 62%) was isolated as a yellowish oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.87$ (t, $^{3}J = 7.4$ Hz, 3 H, CH₂CH₂CH₃), 1.56–1.64 (m, 2 H, $CH_2CH_2CH_3$), 2.28 (t, ${}^3J = 7.6 \text{ Hz}$, 2 H, $CH_2CH_2CH_3$), 6.18 (s, 1 H, CH), 7.35-7.39 (m, 2 H, CH_{Naph}), 7.66-7.70 (m, 2 H, CH_{Naph}), 7.73 (m, 1 H, CH_{Naph}), 7.74 (m, 1 H, CH_{Naph}), 8.27 (s, 1 H, CH_{Naph}), 16.21 (br. s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 12.4 \text{ (CH}_2\text{CH}_2\text{CH}_3), 18.1 \text{ (CH}_2\text{CH}_2\text{CH}_3), 40.0 \text{ (CH}_2\text{CH}_2\text{CH}_3),}$ 95.3 (CH), 121.1, 125.5 (CH_{Naph}), 126.5, 126.8 (C_{Naph}), 126.9, 127.2, 128.1 (CH_{Naph}), 131.1 (C_{Naph}), 131.6, 134.0 (CH_{Naph}), 182.1 (COH), 195.5 (COCH₂CH₂CH₃) ppm. IR (KBr): $\tilde{v} = 2960$ (m), 2873 (w), 1631 (s), 1465 (m), 1386 (m), 1278 (w), 1152 (w), 953 (w), 781 (s), 746 (w) cm⁻¹. MS (EI, 70 eV): m/z (%) = 240 (82) [M]⁺, 211 (22), 197 (100), 170 (19), 155 (95), 127 (67), 101 (5), 77 (9), 69 (77), 43 (10). HRMS (EI): calcd. for $C_{16}H_{16}O_2$ 240.11448; found 240.11470.

General Procedure for the Synthesis of Fluorinated 1,3-Dicarbonyl Compounds 2a–c: A stirred solution of 1a–c (16 mmol) and Selectfluor (16 mmol) in acetonitrile (2 mL/1 mmol of 1) was irradiated (microwave) at 82 °C for 10 min. The solution was cooled to room temperature and filtered. The solvent was removed in vacuo and the residue was purified by vacuum distillation to give 2a–c. The syntheses of 2b^[22] and 2c^[45] have been previously reported.

General Procedure for the Synthesis of Fluorinated 1,3-Dicarbonyl Compounds 2d-k: A stirred solution of 1d-k (16 mmol) and Selectfluor (16 mmol) in acetonitrile (2 mL/1 mmol of 1) was refluxed for 4 h. After cooling, the precipitate was filtered, and the filtrate was diluted with water. The organic layer was separated, and the aqueous layer was repeatedly extracted with CH₂Cl₂. The combined organic extracts were dried (Na₂SO₄) and filtered. The filtrate was concentrated in vacuo, and the residue was purified by chromatography (silica gel, *n*-heptane/dichloromethane) to give the fluorinated 1,3-dicarbonyl compounds 2d-k.

2-Fluoro-1-(2-methoxyphenyl)-1,3-butanedione (2d): Starting with **1d** (3.088 g, 16.1 mmol) and Selectfluor (5.695 g, 16.1 mmol) in acetonitrile (32 mL), 2d (2.500 g, 73%) was isolated as a colourless oil. ¹H NMR (300 MHz, CDCl₃): δ = 2.21 (s, 3 H, CH₃), 3.75 (s, 3 H, OCH₃), 6.06 (d, ${}^{2}J_{H,F}$ = 48.0 Hz, 1 H, CH), 6.86–6.89 (m, 2 H, CH_{Ar}), 7.43 (m, 1 H, CH_{Ar}), 7.55 (m, 1 H, CH_{Ar}) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 24.1 (CO*C*H₃), 55.8 (OCH₃), 97.9 (d, ${}^{1}J$ = 194.9 Hz, CF), 112.1, 121.5 (CH_{Ar}), 125.0 (C_{Ar}OCH₃), 131.7 (CH_{Ar}) , 135.5 (d, ${}^{4}J$ = 3.5 Hz, CH_{Ar}), 170.1 (d, ${}^{3}J$ = 26.9 Hz, C_{Ar}), 193.4 (d, ${}^{2}J = 21.0 \text{ Hz}$, COCFCOCH₃), 199.6 (d, ${}^{2}J = 22.5 \text{ Hz}$, $COCFCOCH_3$) ppm. ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -191.1$ (CF) ppm. IR (KBr): $\tilde{v} = 2960$ (m), 2874 (w), 1726 (s), 1600 (s), 1489 (s), 1301 (s), 1254 (s), 1163 (m), 1081 (s), 962 (w), 757 (s) cm⁻¹. MS (EI, 70 eV): m/z (%) = 210 (50) [M⁺], 135 (100), 120 (2), 108 (2), 92 (11), 77 (22), 63 (4), 43 (8). HRMS (EI): calcd. for C₁₆H₁₁FO₃ 210.06867; found 286.06820.

2-Fluoro-1-(2-methoxyphenyl)-1,3-hexanedione (**2e**): Starting with **1e** (0.881 g, 4.0 mmol) and Selectfluor (1.417 g, 4.0 mmol) in acetonitrile (8 mL), **2e** (0.808 g, 90%) was isolated as a colourless oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.88$ (t, ${}^{3}J = 7.2$ Hz, 3 H, CH₂CH₂CH₃), 1.55–1.63 (m, 2 H, CH₂CH₂CH₃), 2.58 (br. t, ${}^{3}J = 7.2$ Hz, 2 H, CH₂CH₂CH₃), 3.82 (s, 3 H, OCH₃), 5.93 (d, ${}^{2}J_{H,F} = 45.9$ Hz, 1 H, CH), 6.96 (d, ${}^{3}J = 8.5$ Hz, 1 H, CH_{Ar}), 7.01 (d, ${}^{3}J = 7.6$ Hz, 1 H, CH_{Ar}), 7.46–7.52 (m, 1 H, CH_{Ar}), 7.62–7.66 (m, 1 H, CH_{Ar}) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.0$

(COCH₂CH₂CH₃), 16.6 (d, 4J = 1.2 Hz, COCH₂CH₂CH₂CH₃), 40.9 (CO*C*H₂CH₂CH₃), 55.9 (OCH₃), 97.8 (d, 1J = 194.9 Hz, CO*C*FCOCH₂CH₂CH₃), 112.1, 121.4 (CH_{Ar}), 125.1 ($C_{\rm Ar}$ OCH₃), 131.0, 135.4 (CH_{Ar}), 169.7 (d, 3J = 27.0 Hz, C_{Ar}), 193.4 (d, 2J = 20.6 Hz, *C*OCFCOCH₂CH₂CH₃), 201.8 (d, 2J = 21.5 Hz, COCFCOCH₂CH₂CH₃) ppm. ¹⁹F NMR (235 MHz, CDCl₃): δ = -192.8 (CF) ppm. IR (neat): \tilde{v} = 2966 (s), 2877 (m), 1731 (s), 1686 (s), 1599 (s), 1486 (s), 1438 (s), 1290 (s), 1248 (s), 1163 (s), 1019 (s), 971 (m), 759 (s), 651 (m) cm⁻¹. MS (EI, 70 eV): mlz (%) = 238 (3) [M⁺], 207 (10), 168 (5), 135 (100), 92 (16) (8) 77, 64 (3), 43 (10). HRMS (EI): calcd. for C₁₃H₁₅FO₃ 238.09997; found 238.09972.

2-Fluoro-1-(2-methylphenyl)-1,3-butanedione (2f): Starting with 1f (2.0618 g, 12.6 mmol) and Selectfluor (4.4 g, 12.6 mmol) in acetonitrile (25 mL), 2f (1.123 g, 46%) was isolated as a colourless oil. ¹H NMR (300 MHz, CDCl₃): δ = 2.23 (br. s, 3 H, CH₃), 2.42 (s, 3 H, $CH_{3,Ar}$), 5.75 (d, ${}^{2}J_{H,F}$ = 50.1 Hz, 1 H, CH), 7.21 (m, 1 H, CH_{Tol}), 7.33 (m, 1 H, CH_{Tol}), 7.35 (m, 1 H, CH_{Tol}), 7.60 (m, 1 H, CH_{Tol}) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 21.2$ (COCH₃), 28.6 $(CH_{3 \text{ Tol}})$, 95.8 (d, ${}^{1}J = 196.5 \text{ Hz}$, CF), 124.6 (CH_{Tol}), 127.1 $(CCH_{3 \text{ Tol}})$, 131.2, 131.6 (CH_{Tol}) , 139.7 $(d, {}^{4}J = 3.6 \text{ Hz}, CH_{\text{Tol}})$, 165.1 (C_{Tol}), 172.0 (d, ${}^{2}J$ = 20.7 Hz, COCFCOCH₃), 187.1 (d, ${}^{2}J$ = 22.8 Hz, COCFCOCH₃) ppm. ¹⁹F NMR (235 MHz, CDCl₃): δ = -187.1 (CF) ppm. IR (KBr): \tilde{v} = 3065 (w), 2929 (m), 1713 (s), 1692 (s), 1602 (m), 1571 (m), 1457 (m), 1296 (s), 1101 (m), 958 (w), 765 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 194 (5) [M⁺], 179 (39), 159 (5), 131 (12), 119 (100), 103 (6), 91 (66), 77 (5), 65 (17), 51 (5), 43 (19), 39 (6). HRMS (EI): calcd. for C₁₁H₁₁FO₂ 194.07376; found 194.07356.

1-(2-Chlorophenyl)-2-fluoro-1,3-butanedione (2g): Starting with **1g** (0.393 g, 2.0 mmol) and Selectfluor (0.708 g, 2.0 mmol) in acetonitrile (4 mL), **2g** (0.180 g, 42%) was isolated as a colourless oil. 1 H NMR (300 MHz, CDCl₃): δ = 2.23 (s, 3 H, CH₃), 5.79 (d, $^{2}J_{\rm H,F}$ = 49.3 Hz, 1 H, CH), 7.29 (m, 1 H, CH_{ClPh}), 7.31 (m, 1 H, CH_{ClPh}), 7.39 (m, 1 H, CH_{ClPh}), 7.55 (m, 1 H, CH_{ClPh}) ppm. 13 C NMR (75 MHz, CDCl₃): δ = 25.0 (COCH₃), 96.0 (d, ^{1}J = 198.9 Hz, CF), 123.1, 124.5 (CH_{ClPh}), 125.7 (CCl_{ClPh}), 127.7, 133.6 (CH_{ClPh}), 168.7 (d, ^{3}J = 24.6 Hz, C_{ClPh}), 191.8 (d, ^{2}J = 20.3 Hz, COCFCOCH₃), 199.1 (d, ^{2}J = 22.7 Hz, COCFCOCH₃) ppm. 19 F NMR (235 MHz, CDCl₃): δ = -190.2 (CF) ppm. IR (neat): $\hat{\mathbf{v}}$ = 3420 (w), 2925 (w), 1735 (s), 1683 (s), 1509 (s), 1358 (m), 1286 (s), 1122 (m), 1063 (m), 970 (w), 780 (s) cm⁻¹.

1-(4-Chlorophenyl)-2-fluoro-1,3-butanedione (2h): Starting with **1h** (3.933 g, 20.0 mmol) and Selectfluor (7.085 g, 20.0 mmol) in acetonitrile (40 mL), **2h** (2.5 g, 58%) was isolated as a colourless oil. 1 H NMR (300 MHz, CDCl₃): δ = 2.27 (s, 3 H, CH₃), 5.90 (d, $^{2}J_{\rm H,F}$ = 49.9 Hz, 1 H, CH), 7.36 (m, 2 H, CH_{CIPh}), 7.79 (m, 2 H, CH_{CIPh}) ppm. IR (KBr): \tilde{v} = 3106 (w), 1924 (w), 1740 (m), 1689 (s), 1590 (s), 1488 (m), 1360 (s), 1179 (s), 1093 (s), 836 (s), 729 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 216 (37 Cl, 5) [M]+, 214 (35 Cl, 15) [M]+, 199 (3), 179 (13), 159 (3), 141 (37 Cl, 34), 139 (35 Cl, 100), 113 (37 Cl, 14), 111 (35 Cl, 41), 87 (6), 75 (20), 50 (6), 43 (23). HRMS (EI): calcd. for C₁₀H₈CIFO₂ ([M]+, 35 Cl) 214.01914; found 214.01846.

2-Fluoro-1-(4-fluorophenyl)-1,3-butanedione (2i): Starting with **1i** (0.360 g, 2.0 mmol) and Selectfluor (0.708 g, 2.0 mmol) in acetonitrile (4 mL), **2i** (0.185 g, 46%) was isolated as a colourless oil. 1 H NMR (300 MHz, CDCl₃): δ = 2.25 (s, 3 H, CH₃), 5.90 (d, $^{2}J_{H,F}$ = 50.1 Hz, 1 H, CH), 7.07 (m, 2 H, CH_{FPh}), 7.96–7.98 (m, 2 H, CH_{FPh}) ppm. 13 C NMR (75 MHz, CDCl₃): δ = 24.7 (COCH₃), 96.6 (d, ^{1}J = 198.0 Hz, COCFCOCH₃), 115.1 (d, ^{3}J = 22.2 Hz, 2CH_{FPh}), 128.9 (d, ^{3}J = 4.4 Hz, C_{FPh}), 131.6 (d, ^{4}J = 3.3 Hz, 2CH_{FPh}), 165.5 (d, ^{1}J = 256.2 Hz, CF_{FPh}), 187.7 (d, ^{2}J = 19.2 Hz, COCFCOCH₃), 199.4 (d, ^{2}J = 23.6 Hz, COCFCOCH₃) ppm. IR

(neat): $\tilde{v}=3079$ (m), 2929 (m), 1738 (s), 1693 (s), 1599 (s), 1507 (s), 1414 (s), 1360 (s), 1240 (s), 1160 (s), 1013 (m), 851 (s), 610 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 198 (12) [M⁺], 183 (4), 123 (100), 107 (3), 95 (42), 75 (15), 43 (17). HRMS (EI): calcd. for $C_{10}H_8F_2O_2$ 198.04869; found 198.139023.

2-Fluoro-1-(1-naphthyl)-1,3-butanedione (**2j**): Starting with **1j** (0.480 g, 2.0 mmol) and Selectfluor (0.708 g, 2.0 mmol) in acetonitrile (4 mL), **2j** (0.193 g, 37%) was isolated as a colourless oil. 1 H NMR (300 MHz, CDCl₃): δ = 2.20 (s, 3 H, CH₃), 5.84 (d, $^{2}J_{\rm H,F}$ = 49.9 Hz, 1 H, CH), 7.37–7.39 (m, 4 H, CH_{Naph}), 7.82–7.86 (m, 2 H, CH_{Naph}), 8.51–8.54 (m, 1 H, CH_{Naph}) ppm. 13 C NMR (75 MHz, CDCl₃): δ = 22.5 (COCH₃), 97.5 (d, ^{1}J = 200.4 Hz, COCFCOCH₃), 127.1, 130.3, 130.5, 130.9 (CH_{Naph}), 131.8, 132.1 (C_{Naph}), 132.2, 132.8, 133.4 (CH_{Naph}), 167.7 (d, ^{3}J = 26.8 Hz, C_{Naph}), 188.8 (d, ^{2}J = 28.4 Hz, COCFCOCH₃), 199.5 (d, ^{2}J = 23.1 Hz, COCFCOCH₃) ppm. 19 F NMR (235 MHz, CDCl₃): δ = $^{-1}$ 85.6 (CF) ppm. IR (neat): \bar{v} = 3400 (br., w), 3072 (w), 2927 (w), 1716 (s), 1590 (s), 1472 (m), 1435 (s), 1360 (m), 1291 (m), 1126 (m), 1053 (m), 743 (s) cm⁻¹. MS (EI, 70 eV): mlz (%) = 230 (25) [M⁺], 210 (5), 195 (5), 167 (12), 155 (100), 139 (12), 127 (82), 101 (5), 77 (7), 43 (11).

2-Fluoro-1-(2-naphthyl)-1,3-hexanedione (2k): Starting with 1k (0.480 g, 2.0 mmol) and Selectfluor (0.708 g, 2.0 mmol) in acetonitrile (4 mL), 2k (0.331 g, 64%) was isolated as a colourless oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.80$ (t, $^{3}J = 7.6$ Hz, 3 H, $CH_2CH_2CH_3$), 1.49–1.57 (m, 2 H, $CH_2CH_2CH_3$), 2.58 (br. t, $^3J =$ 8.0 Hz, 2 H, $CH_2CH_2CH_3$), 5.84 (d, $^2J_{H,F}$ = 48.4 Hz, 1 H, CH), 7.78-7.81 (m, 4 H, CH_{Naph}), 8.41 (m, 1 H, CH_{Naph}), 8.49 (m, 2 H, CH_{Naph}) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 13.8$ $(COCH_2CH_2CH_3)$, 16.6 (d, ${}^4J = 1.6 Hz$, $COCH_2CH_2CH_3$), 40.5 (d, 97.1 ^{1}J $(COCH_2CH_2CH_3),$ 197.7 Hz, $COCFCOCH_2CH_2CH_3$), 124.5 (d, ${}^4J = 197.7 Hz$, CH_{Naph}), 127.4, 128.2, 129.1, 129.8, 130.4 (CH_{Naph}), 132.6 (C_{Naph}), 133.0 (CH_{Naph}), 136.5 (C_{Naph}), 165.7 (d, ${}^{3}J = 19.7 \text{ Hz}$, C_{Naph}), 190.6 (d, ${}^{2}J =$ 18.9 Hz, \dot{C} OCFCOCH₂CH₂CH₃), 203.2 (d, 2J = 22.6 Hz, $COCFCOCH_2CH_2CH_3$) ppm. ¹⁹F NMR (235 MHz, CDCl₃): δ = -190.7 (CF) ppm. IR (KBr): $\tilde{v} = 3060$ (w), 2965 (m), 2876 (w), 1732 (m), 1686 (s), 1629 (s), 1596 (m), 1467 (m), 1281 (m), 1126 (m), 1098 (m), 864 (w), 755 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 258 (27) [M⁺], 229 (12), 215 (5), 188 (19), 155 (100), 127 (54), 101 (3), 71 (10), 43 (15). HRMS (EI): calcd. for C₁₆H₁₅FO₂ 258.10506; found 258.10470.

General Procedure for the Synthesis of Silyl Enol Ethers 3: To a stirred benzene solution (2.5 mL/1 mmol of 2) of 2 (10 mmol) was added triethylamine (16 mmol). After the solution was stirred for 2 h, chlorotrimethylsilane (18 mmol) was added. After the solution was stirred for 72 h, the solvent was removed in vacuo and hexane (25 mL) was added to the residue to give a suspension. The latter was filtered under argon. The filtrate was concentrated in vacuo to give silyl enol ethers 3.

3-Fluoro-4-(2-methoxyphenyl)-4-(trimethylsilyloxy)-3-buten-2-one (**3d**): Starting with benzene (30 mL), **2d** (2.502 g, 11.9 mmol), triethylamine (1.926 g, 19.0 mmol) and chlorotrimethylsilane (2.326 g, 21.4 mmol), **3d** was isolated as a yellowish oil (3.322 g, 99%). ¹H NMR (300 MHz, CDCl₃): δ = 0.10–0.11 [m, 9 H, Si(CH₃)₃], 1.90 (s, 3 H, CH₃), 3.73 (s, 3 H, OCH₃), 6.87 (m, 1 H, CH_{Ar}), 6.90 (m, 1 H, CH_{Ar}), 7.12–7.14 (m, 1 H, CH_{Ar}) 7.32 (m, 1 H, CH_{Ar}) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 0.1 [OSi(CH₃)₃], 25.8 (COCH₃), 55.0 (C_{Ar}OCH₃), 110.6, 120.0 (CH_{Ar}), 123.4 (C_{Ar}OCH₃), 130.3, 131.1 (CH_{Ar}), 143.3 (C), 145.8 (d, ¹*J* = 240.4 Hz, CF), 156.7 (C_{Ar}), 190.3 (d, ²*J* = 27.5 Hz, COCH₃) ppm.

2-Fluoro-1-(2-methoxyphenyl)-1-(trimethylsilyloxy)-1-hexen-3-one (3e): Starting with benzene (39 mL), 2e (3.079 g, 12.9 mmol), trieth-

ylamine (2.090 g, 20.6 mmol) and chlorotrimethylsilane (2.524 g, 23.2 mmol), **3e** was isolated as a yellowish oil (3.163 g, 79%). 1 H NMR (300 MHz, CDCl₃): $\delta = 0.09$ [m, 9 H, Si(CH₃)₃], 0.76 (t, ^{3}J = 7.4 Hz, 3 H, CH₂CH₂CH₃), 1.44–1.47 (m, 2 H, CH₂CH₂CH₃), 2.30 (br. t, ^{3}J = 7.2 Hz, 2 H, CH₂CH₂CH₃), 3.71 (s, 3 H, OCH₃), 6.83 (d, ^{3}J = 8.2 Hz, 1 H, CH_{Ar}), 6.90 (d, ^{3}J = 7.6 Hz, 1 H, CH_{Ar}), 7.11 (dd, ^{3}J = 7.6 Hz, ^{4}J = 1.7 Hz, 1 H, CH_{An}), 7.31 (dd, ^{3}J = 7.6 Hz, ^{4}J = 0.9 Hz, 1 H, CH_{Ar}) ppm. 13 C NMR (75 MHz, CDCl₃): δ = 0.1 [OSi(CH₃)₃], 13.1 (COCH₂CH₂CH₃), 16.6 (d, ^{4}J = 1.2 Hz, COCH₂CH₂CH₃), 40.7 (COCH₂CH₂CH₃), 54.8 (COCH₃), 110.5, 119.8 (CH_{Ar}), 123.6 (C_{Ar}OCH₃), 130.2, 130.7 (CH_{Ar}), 134.6 (C), 145.6 (d, ^{1}J = 243.2 Hz, CF), 156.6 (d, ^{3}J = 9.9 Hz, C_{Ar}), 193.2 (d, ^{2}J = 28.5 Hz, COCH₂CH₂CH₃) ppm. 19 F NMR (235 MHz, CDCl₃): δ = –145.9 (CF) ppm.

[2-Fluoro-3-methyl-1-(2-methylphenyl)-1,3-butadienyloxy|trimethylsilane (3f): Starting with benzene (18 mL), **2f** (1.123 g, 5.8 mmol), triethylamine (0.936 g, 9.2 mmol) and chlorotrimethylsilane (1.131 g, 10.5 mmol), **3f** was isolated as a yellowish oil (1.001 g, 65%). ¹H NMR (300 MHz, CDCl₃): δ = 0.03 [m, 9 H, Si(CH₃)₃], 2.11 (s, 3 H, CH_{3,Tol}), 7.12 (m, 2 H, CH_{Tol}), 7.18 (m, 2 H, C_{Tol}) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 0.1 [OSi(CH₃)₃], 18.5 (COCH₃), 27.1 (CH_{3,Tol}), 125.1, 127.6, 128.8, 129.8 (CH_{Tol}), 131.0 (CCH_{3,Tol}), 136.0 (d, ³*J* = 2.7 Hz, C_{Tol}), 143.5 (C), 145.6 (d, ¹*J* = 241.0 Hz, *C*FCOCH₃), 189.2 (d, ²*J* = 24.4 Hz, *C*OCH₃) ppm.

4-(2-Chlorophenyl)-3-fluoro-4-(trimethylsilyloxy)-3-buten-2-one (**3g**): Starting with benzene (26 mL), **2g** (2.281 g, 10.6 mmol), triethylamine (1.719 g, 17.0 mmol) and chlorotrimethylsilane (2.076 g, 19.1 mmol), **3g** was isolated as a yellowish oil (2.432 g, 80%). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.09$ [m, 9 H, Si(CH₃)₃], 1.97 (s, 3 H, CH₃), 7.38 (m, 1 H, CH_{ClPh}), 7.40 (m, 1 H, CH_{ClPh}), 7.50 (m, 1 H, CH_{ClPh}), 7.54 (m, 1 H, CH_{ClPh}) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 0.1$ [OSi(CH₃)₃], 27.6 (COCH₃), 126.2, 129.1, 130.1, 131.8 (CH_{ClPh}), 132.5, 133.4 (C_{ClPh}), 143.5 (d, ²J = 12.6 Hz, 1 C), 145.2 (d, ¹J = 244.7 Hz, CFCOCH₃), 190.1 (d, ²J = 29.7 Hz, COCH₃) ppm.

4-(4-Chlorophenyl)-3-fluoro-4-(trimethylsilyloxy)-3-buten-2-one (**3h**): Starting with benzene (35 mL), **2h** (2.511 g, 11.6 mmol), triethylamine (1.885 g, 18.6 mmol) and chlorotrimethylsilane (2.277 g, 18.6 mmol), **3h** was isolated as a yellowish oil (2.183 g, 70%). ¹H NMR (300 MHz, CDCl₃): δ = 0.13 [m, 9 H, Si(CH₃)₃], 2.09 (s, 3 H, CH₃), 7.19 (m, 2 H, CH_{ClPh}), 7.56 (m, 2 H, CH_{ClPh}) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 0.1 [OSi(*C*H₃)₃], 19.0 (CO*C*H₃), 127.7, 129.7, 129.8, 130.0 (CH_{ClPh}), 135.4 (C), 137.4 (*C*Cl_{ClPh}), 144.7 (d, ¹*J* = 237.4 Hz, *C*FCOCH₃), 149.9 (d, ³*J* = 12.1 Hz, C_{ClPh}), 185.1 (d, ²*J* = 29.4 Hz, *C*OCH₃) ppm.

3-Fluoro-4-(4-fluorophenyl)-4-(trimethylsilyloxy)-3-buten-2-one (3i): Starting with benzene (26 mL), **2i** (2.064 g, 10.4 mmol), triethylamine (1.684 g, 16.7 mmol) and chlorotrimethylsilane (2.034 g, 18.7 mmol), **3i** was isolated as a yellowish oil (2.306 g, 82%). 1 H NMR (300 MHz, CDCl₃): δ = 0.23 [m, 9 H, Si(CH₃)₃], 2.20 (s, 3 H, CH₃), 7.03 (m, 2 H, CH_{FPh}), 7.76–7.78 (m, 2 H, CH_{FPh}) ppm. 13 C NMR (75 MHz, CDCl₃): δ = 0.4 [OSi(CH₃)₃], 19.0 (COCH₃), 114.6 (d, 2 J = 21.5 Hz, 2 CH_{FPh}), 130.8 (d, 2 J = 6.9 Hz, 2 CH_{FPh}), 144.8 (d, 1 J = 237.9 Hz, CFCOCH₃), 146.4 (C), 149.7 (d, 3 J = 12.2 Hz, C_{FPh}), 164.5 (d, 1 J = 252.5 Hz, CF_{FPh}), 185.5 (d, 2 J = 29.1 Hz, COCF*C*OCH₃) ppm. 19 F NMR (235 MHz, CDCl₃): δ = –144.1 (CF) ppm.

3-Fluoro-4-(1-naphthyl)-4-(trimethylsilyloxy)-3-buten-2-one (3j): Starting with benzene (24 mL), 2j (2.425 g, 9.4 mmol), triethylamine (1.520 g, 15.0 mmol) and chlorotrimethylsilane (1.836 g, 16.9 mmol), 3j was isolated as a yellowish oil (2.016 g, 71%). 1 H NMR (300 MHz, CDCl₃): δ = 0.16 [m, 9 H, Si(CH₃)₃], 1.94 (br. s,

3 H, CH₃), 7.56 (m, 4 H, CH_{Naph}), 7.92 (m, 3 H, CH_{Naph}) ppm. 13 C NMR (75 MHz, CDCl₃): $\delta=0.1$ [OSi(CH₃)₃], 27.2 (COCH₃), 124.1, 124.4, 125.6, 125.7 (CH_{Naph}), 126.3 (d, $^3J=11.8$ Hz, C_{Naph}), 126.4 (CH_{Naph}), 127.2, 127.8 (C_{Naph}), 127.9, 129.7 (CH_{Naph}), 144.3 (C), 145.9 (d, $^1J=242.6$ Hz, CFCOCH₃), 189.8 (d, $^2J=26.7$ Hz, COCH₃) ppm.

2-Fluoro-1-(2-naphthyl)-1-(trimethylsilyloxy)-1-hexen-3-one (3k): Starting with benzene (19 mL), **2k** (1.9155 g, 7.4 mmol), triethylamine (1.200 g, 11.8 mmol) and chlorotrimethylsilane (1.449 g, 13.3 mmol), **3k** was isolated as a yellowish oil (1.813 g, 74%). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.10$ –0.24 [m, 9 H, Si(CH₃)₃], 0.91 (t, ${}^{3}J = 7.2$ Hz, 3 H, CH₂CH₂CH₃), 1.54–1.62 (m, 2 H, CH₂CH₂CH₃), 2.57 [br. t, ${}^{3}J = 8.5$ Hz, 2 H, CH₂CH₂CH₃], 7.37 (m, 1 H, CH_{Naph}), 7.39 (m, 1 H, CH_{Naph}), 7.69–7.78 (m, 4 H, CH_{Naph}), 8.26 (m, 1 H, CH_{Naph}) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 0.1$ [OSi(CH₃)₃], 13.1 (COCH₂CH₂CH₃), 124.4, 127.0, 127.1, 127.3, 128.7, 128.8, 129.7 (CH_{Naph}), 131.7, 134.4 (C_{Naph}), 134.5 (C), 145.0 (d, ${}^{4}J = 238.4$ Hz, CFCOCH₂CH₂CH₃), 152.8 (d, ${}^{3}J = 10.7$ Hz, C_{Naph}), 186.9 (d, ${}^{2}J = 29.7$ Hz, COCH₂CH₂CH₃) ppm. ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -142.9$ (CF) ppm.

General Procedure for the Synthesis of Fluorinated Phenols and Biaryls 5: To a CH $_2$ Cl $_2$ solution of silyl enol ether 3 (1.0 equiv.) and 1,3-bis(silyl enol ether) 4 (1.0 equiv.) was added dropwise TiCl $_4$ (1.09 equiv.) at -78 °C under argon atmosphere. The solution was stirred at -78 °C for 30 min and then warmed to 20 °C during 18 h. To the solution was added hydrochloric acid (10%). The organic layer was separated and the aqueous layer was repeatedly extracted with CH $_2$ Cl $_2$. The combined organic extracts were dried (Na $_2$ SO $_4$) and filtered. The filtrate was concentrated in vacuo and the residue was purified by chromatography (silica gel, n-heptane/EtOAc) to give products 5.

Methyl 2,4-Diethyl-3-fluoro-6-hydroxybenzoate (5a): Starting with bis(silyl enol ether) 4a (0.588 g, 2.26 mmol), TiCl₄ (0.50 mL, 4.52 mmol) in CH₂Cl₂ (5 mL) and silvl enol ether **3a** (0.493 g, 2.26 mmol), 5a was isolated (0.274 g, 54%) by column chromatography as a yellowish oil ($R_f = 0.45$, silica gel, n-heptane/EtOAc = 10:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.16$ (t, ³J = 7.4 Hz, 3 H, CH_2CH_3), 1.21 (t, $^3J = 7.6 \text{ Hz}$, 3 H, CH_2CH_3), 2.63 (ddq, $^3J =$ 7.6 Hz, ${}^{4}J_{F,H} = 1.2$ Hz, ${}^{4}J_{H,H} = 0.7$ Hz, 2 H, $CH_{2}CH_{3}$), 2.93 (dq, $^{3}J = 7.4 \text{ Hz}, ^{4}J_{\text{F,H}} = 3.2 \text{ Hz}, 2 \text{ H}, \text{C}H_{2}\text{CH}_{3}), 3.89 \text{ (s, 3 H, OCH}_{3}),$ 6.68 (dt, ${}^{4}J_{H,F}$ = 6.6 Hz, ${}^{4}J_{H,H}$ = 0.7 Hz, 1 H, Ar), 10.85 (s, 1 H, OH) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 13.5, 14.9 (CH_2CH_3) , 20.7 (d, ${}^3J = 6.5 \text{ Hz}$, CH_2CH_3), 22.7 (d, ${}^3J = 4.1 \text{ Hz}$, CH_2CH_3), 52.2 (OCH₃), 109.7 (d, ${}^3J = 3.5 \text{ Hz}$, $CCOOCH_3$), 115.5 $(d, {}^{3}J = 5.3 \text{ Hz}, CH_{Ar}), 132.1 (d, {}^{2}J = 18.2 \text{ Hz}, CCF), 138.9 (d, {}^{2}J$ = 20.5 Hz, CCF), 152.6 (d, ${}^{1}J$ = 234.2 Hz, CF), 158.3 (d, ${}^{4}J$ = 1.8 Hz, COH), 171.4 (d, ${}^{4}J$ = 3.2 Hz, COOCH₃) ppm. ${}^{19}F$ NMR (235 MHz, Cl₃CF): $\delta = -133.0$ (CF) ppm. IR (neat): $\tilde{v} = 3101$ (br., m), 2973 (m), 2939 (m), 2879 (m), 1733 (m), 1668 (br., s), 1626 (s), 1574 (m), 1437 (s), 1326 (s) cm⁻¹. MS (EI, 70 eV): m/z (%) = 226 (19) [M⁺], 195 (18), 194 (100), 151 (58). HRMS (EI, 70 eV): calcd. for C₁₂H₁₅FO₃ [M⁺] 226.09997; found: 226.10022.

Ethyl 2,4-Diethyl-3-fluoro-6-hydroxybenzoate (5b): Starting with bis(silyl enol ether) 4b (0.905 g, 3.3 mmol), TiCl₄ (0.620 g, 3.3 mmol) in CH₂Cl₂ (6 mL) and silyl enol ether 3a (0.654 g, 3.0 mmol), 5b was isolated (0.302 g, 42%) by column chromatography (silica gel, *n*-heptane/EtOAc = 30:1 \rightarrow 20:1) as a colourless, viscous oil. ¹H NMR (250 MHz, CDCl₃): δ = 1.20 (t, ³*J* = 7.5 Hz, 6 H, CH₂CH₃), 1.43 (t, ³*J* = 7.0 Hz, 3 H, OCH₂CH₃), 2.62 (dq, ³*J* = 7.6 Hz, ⁴*J*_{E,H} = 3.5 Hz, 2 H, CH₂CH₃), 2.90 (ddq, ³*J* = 7.4 Hz, ⁴*J*_{E,H} = 1.2 Hz, ⁴*J*_{H,H} = 0.9 Hz, 2 H, CH₂CH₃), 4.43 (q, ³*J* = 7.2 Hz,

2 H, OC H_2 CH₃), 6.68 (d, ${}^4J_{\rm H,F}$ = 3.0 Hz, 1 H, CH), 10.90 (s, 1 H, OH) ppm. 13 C NMR (75 MHz, CDCl₃): δ = 12.4 (d, 4J = 0.6 Hz, CH₂CH₃), 12.9 (CH₂CH₃), 13.6 (OCH₂CH₃), 19.6 (d, 3J = 6.6 Hz, CH₂CH₃), 21.6 (d, 3J = 3.5 Hz, CH₂CH₃), 60.7 (OCH₂CH₃), 108.8 (d, 3J = 3.3 Hz, C_{Ar}), 114.5 (d, 3J = 6.6 Hz, CH_{Ar}), 131.0 (d, 2J = 18.0 Hz, C_{Ar}), 137.7 (d, 2J = 20.7 Hz, C_{Ar}), 151.6 (d, 1J = 232.7 Hz, CF_{Ar}), 157.3 (d, 4J = 1.7 Hz, COH_{Ar}), 169.9 (d, 4J = 3.0 Hz, CO) ppm. 19 F NMR (235 MHz, CDCl₃): δ = -133.2 (CF) ppm. IR (neat): \tilde{v} = 2977 (s), 2877 (m), 1663 (s), 1625 (s), 1463 (s), 1373 (s), 1253 (s), 1204 (s), 1081 (s), 1010 (m), 914 (m), 743 (m) cm⁻¹. MS (CI, 70 eV): mlz (%) = 240 (19) [M]⁺, 194 (100), 166 (3), 151 (33), 123 (3), 109 (4). HRMS (EI): calcd. for C₁₃H₁₇FO₃ 240.11562; found 240.11598.

1-(2,4-Diethyl-3-fluoro-6-hydroxyphenyl)-1-ethanone (5c): Starting with bis(silyl enol ether) 4d (0.714 g, 3.3 mmol), TiCl₄ (0.620 g, 3.3 mmol) in CH_2Cl_2 (6 mL) and silyl enol ether **3a** (0.654 g, 3.0 mmol), 5c was isolated (0.315 g, 50%) by column chromatography (silica gel, *n*-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a colourless, viscous oil. ¹H NMR (250 MHz, CDCl₃): $\delta = 1.75$ (t, $^{3}J = 7.7$ Hz, 6 H, CH_2CH_3), 2.67 (s, 3 H, $COCH_3$), 2.87 (ddq, $^3J = 7.7$ Hz, $^4J_{F,H}$ = 1.4 Hz, ${}^{4}J_{H,H}$ = 0.8 Hz, 2 H, $CH_{2}CH_{3}$), 2.93 (dq, ${}^{3}J$ = 7.4 Hz, ${}^{4}J_{F,H}$ = 3.2 Hz, 2 H, C H_{2} CH₃), 6.85 (d, ${}^{4}J_{H,F}$ = 2.6 Hz, 1 H, CH_{Ar}), 11.80 (s, 1 H, OH) ppm. 13 C NMR (62 MHz, CDCl₃): δ = 13.4 (d, ${}^{4}J = 0.9 \text{ Hz}$, $CH_{2}CH_{3}$), 15.1 ($CH_{2}CH_{3}$), 20.6 ($CH_{2}CH_{3}$), 22.6 (CH_2CH_3) , 32.1 $(COCH_3)$, 116.2 (d, $^3J = 3.3$ Hz, CH_{Ar}), 119.7 (d, $^{3}J = 2.2 \text{ Hz}, CCOCH_{3,Ar}$, 130.2 (d, $^{2}J = 16.6 \text{ Hz}, C_{Ar}$), 139.1 (d, $^{2}J = 20.5 \text{ Hz}, C_{Ar}$, 152.7 (d, $^{1}J = 233.7 \text{ Hz}, CF_{Ar}$), 157.3 (COH_{Ar}), 204.9 (d, ${}^{4}J$ = 3.1 Hz, COCH₃) ppm. ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -132.0$ (CF) ppm. IR (neat): $\tilde{v} = 3350$ (br.), 2972 (s), 2878 (m), 1684 (s), 1432 (s), 1359 (s), 1233 (s), 1202 (s), 1089 (m), 841 (m), 661 (w), 562 (w) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 210 (32) [M⁺], 195 (100), 117 (16), 166 (4), 149 (4), 133 (3), 109 (7). HRMS (EI): calcd. for C₁₂H₁₅FO₂ 210.10506; found 210.10486.

(2,4-Diethyl-3-fluoro-6-hydroxyphenyl)(phenyl)methanone (5d): Starting with bis(silyl enol ether) 4e (1.011 g, 3.3 mmol), TiCl₄ (0.620 g, 3.3 mmol) CH₂Cl₂ (6 mL) and silyl enol ether **3a** (0.654 g, 3.0 mmol), 5d was isolated (0.422 g, 52%) by column chromatography (silica gel, *n*-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a colourless, viscous oil. ¹H NMR (250 MHz, CDCl₃): $\delta = 0.95$ (t, $^{3}J = 7.5$ Hz, 3 H, CH_2CH_3), 1.25 (t, ${}^3J = 7.5 \text{ Hz}$, 3 H, CH_2CH_3), 2.38 (dq, 3J = 7.4 Hz, ${}^{4}J_{F,H}$ = 3.3 Hz, 2 H, $CH_{2}CH_{3}$), 2.66 (ddq, ${}^{3}J$ = 7.6 Hz, ${}^{4}J_{\text{F,H}} = 1.4 \text{ Hz}, {}^{4}J_{\text{H,H}} = 1.0 \text{ Hz}, 2 \text{ H}, \text{ C}H_{2}\text{CH}_{3}), 6.69 \text{ (d, } {}^{4}J_{\text{H,F}} =$ 5.0 Hz, 1 H, CH_{Ar}), 7.26 (m, 2 H, CH_{Ph}), 7.42 (m, 1 H, CH_{Ph}), 7.78 (m, 2 H, CH_{Ph}), 10.85 (s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 13.7$ (d, ${}^{4}J = 1.5$ Hz, CH₂CH₃), 14.9 (d, ${}^{4}J = 3.0$ Hz, CH_2CH_3), 20.9 (d, ${}^3J = 3.7 \text{ Hz}$, CH_2CH_3), 22.4 (d, ${}^3J = 3.7 \text{ Hz}$, CH_2CH_3), 13.6 (OCH₂CH₃), 115.6 (d, $^3J = 3.6$ Hz, CH_{Ar}), 122.1 $(d, {}^{3}J = 3.0 \text{ Hz}, C_{Ar}), 128.6 (2 \text{ CH}_{Ph}), 129.2 (\text{CH}_{Ph}), 130.2 (d, {}^{2}J =$ 18.0 Hz, C_{Ar}), 133.3 (CH_{Ph}), 136.0 (d, $^2J = 20.2$ Hz, C_{Ar}), 138.9 (C_{Ph}) , 152.1 (d, ${}^{4}J = 2.2 \text{ Hz}$, COH_{Ar}), 153.3 (d, ${}^{1}J = 235.5 \text{ Hz}$, CF_{Ar}), 199.1 (d, ${}^{4}J = 3.0 \text{ Hz}$, CO_{Ar}) ppm. ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -133.3$ (CF) ppm. IR (neat): $\tilde{v} = 3381$ (m, br.), 2970 (m), 2930 (s), 2852 (m), 1661 (s), 1597 (m), 1450 (s), 1430 (s), 1241 (s), 1060 (m), 842 (m), 689 (m) cm⁻¹. GC-MS (CI, 70 eV): m/z (%) $= 271 (100) [M - 1]^+, 256 (50), 239 (51), 228 (17), 211 (5), 151 (8),$ 128 (7), 105 (15), 77 (31). HRMS (CI): calcd. for C₁₇H₁₆FO₂ [M – 1]+ 271.11288; found 271.11252.

Methyl 6-Fluoro-3-hydroxy-5-phenylbiphenyl-2-carboxylate (5e): Starting with bis(silyl enol ether) **4a** (0.414 g, 1.59 mmol), TiCl₄ (0.298 g, 1.59 mmol) in CH₂Cl₂ (3 mL) and silyl enol ether **3b** (0.500 g, 1.59 mmol), **5e** was isolated (0.430 g, 82%) by column chromatography (silica gel, n-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a

reddish solid (m.p. 114–115 °C). 1 H NMR (250 MHz, CDCl₃): δ = 3.46 (s, 3 H, OCH₃), 7.12 (d, ^{4}J = 6.6 Hz, 1 H, Ar), 7.20–7.50 (m, 8 H, Ph), 7.53–7.63 (m, 2 H, Ph), 10.64 (s, OH) ppm. 13 C NMR (75.5 MHz, CDCl₃): δ = 51.9 (OCH₃), 111.6 (d, ^{3}J = 1.8 Hz, CCOOCH_{3,Ar}), 118.2 (br. s, CH_{Ar}), 127.4 (2CH_{Ph}), 127.7 (2CH_{Ph}), 128.5 (2CH_{Ph}), 128.6 (2CH_{Ph}), 128.9 (br. s, CH_{Ph}), 129.1 (d, ^{4}J = 2.9 Hz, CH_{Ph}), 131.1 (d, ^{2}J = 20.5 Hz, C_{Ar}), 134.7 (d, ^{3}J = 1.4 Hz, C_{Ph}), 135.6 (br. s, C_{Ph}), 135.9 (d, ^{2}J = 17.6 Hz, C_{Ar}), 150.0 (d, ^{1}J = 238.3 Hz, CF), 157.4 (d, ^{4}J = 2.4 Hz, COOH), 170.6 (^{4}J = 2.4 Hz, COOCH₃) ppm. 19 F NMR (235 MHz, Cl₃CF): δ = −127.6 (CF) ppm. IR (Nujol): \tilde{v} = 1669 (m), 1616 (m), 1601 (m), 1336 (m), 1254 (m), 1222 (m), 1208 (m), 1114 (m) cm⁻¹. MS (EI, 70 eV): mlz (%) = 322 (62) [M⁺], 291 (30), 290 (100), 262 (34), 233 (48). HRMS (EI, 70 eV): calcd. for C₂₀H₁₅FO₃ 322.09997; found 322.09939.

Ethyl 6-Fluoro-3-hydroxy-5-phenylbiphenyl-2-carboxylate (5f): Starting with bis(silyl enol ether) 4b (0.366 g, 1.59 mmol), TiCl₄ (0.298 g, 1.59 mmol) in CH₂Cl₂ (3 mL) and silyl enol ether 3b (0.500 g, 1.59 mmol), **5f** a was isolated (0.363 g, 68%) by column chromatography (silica gel, n-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a colourless solid (m.p. 97–98 °C). ¹H NMR (250 MHz, CDCl₃): δ = $0.73 \text{ (t, }^{3}J = 7.0 \text{ Hz, } 3 \text{ H, } OCH_{2}CH_{3}), 3.97 \text{ (q, }^{3}J = 8.0 \text{ Hz, } 2 \text{ H,}$ OCH_2CH_3), 7.12 (d, ${}^4J_{H,F}$ = 6.7 Hz, 1 H, CH_{Ar}), 7.24–7.26 (m, 2 H, CH_{Ph}), 7.28–7.48 (m, 6 H, CH_{Ph}), 7.57–7.62 (m, 2 H, CH_{Ph}), 10.80 (s, 1 H, OH) ppm. ¹³C NMR (62 MHz, CDCl₃): δ = 12.9 (OCH_2CH_3) , 61.3 (OCH_2CH_3) , 111.7 (d, $^3J = 1.9$ Hz, C_{Ar}), 118.1 $(d, {}^{3}J = 2.5 \text{ Hz}, CH_{Ar}), 127.2 (CH_{Ph}), 127.6 (2CH_{Ph}), 128.5$ $(4CH_{Ph})$, 129.0 $(4CH_{Ph})$, 131.1 $(d, {}^{2}J = 20.2 \text{ Hz}, C_{Ar})$, 134.7 (C_{Ph}) , 135.7 (d, ${}^{2}J$ = 16.5 Hz, C_{Ar}), 149.9 (d, ${}^{1}J$ = 234.1 Hz, CF_{Ar}), 157.5 (d, ${}^{4}J = 2.1 \text{ Hz}$, COH_{Ar}), 170.1 (d, ${}^{4}J = 1.5 \text{ Hz}$, CO) ppm. ${}^{19}\text{F}$ NMR (235 MHz, CDCl₃): $\delta = -134.0$ (CF) ppm. IR (Nujol): $\tilde{v} =$ 1665 (m), 1615 (w), 1558 (w), 1505 (w), 1319 (m), 1249 (m), 1226 (m), 1179 (m), 1111 (m), 1075 (w), 902 (w), 865 (w), 760 (s), 697 (s) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 336 (35) [M]⁺, 290 (100), 262 (27), 233 (36), 157 (3), 131 (3). C₂₁H₁₇FO₃ (336.37): calcd. C 74.99, H 5.09; found C 74.63, H 5.24.

(6-Fluoro-3-hydroxy-5-phenylbiphenyl-2-yl)-1-ethanone (5g): Starting with bis(silyl enol ether) 4d (0.344 g, 1.59 mmol), TiCl₄ (0.298 g, 1.59 mmol) in CH₂Cl₂ (3 mL) and silyl enol ether **3b** (0.500 g, 1.59 mmol), **5g** was isolated (0.146 g, 30%) by column chromatography (silica gel, *n*-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a colourless solid (m.p. 65–66 °C). ¹H NMR (250 MHz, CDCl₃): δ = 1.81 (s, 3) H, COCH₃), 7.20 (d, ${}^{4}J_{H,F}$ = 6.7 Hz, 1 H, CH_{Ar}), 7.35–7.62 (m, 10 H, CH_{Ph}), 11.70 (s, 1 H, OH) ppm. ¹³C NMR (62 MHz, CDCl₃): $\delta = 31.6 \text{ (CO} \text{CH}_3), 118.8 \text{ (d, }^3 \text{J} = 2.7 \text{ Hz, CH}_{Ar}), 120.3 \text{ (C}_{Ph}), 128.4,$ 128.6, 128.7, 128.7, 128.9, 128.9, 129.0, 129.7, 129.8, 130.0 (CH_{Ph}), 134.5 (d, ${}^{3}J$ = 4.3 Hz, C_{Ar}), 134.7 (d, ${}^{2}J$ = 22.1 Hz, C_{Ar}), 136.2 (d, $^{2}J = 17.2 \text{ Hz}, C_{Ar}$, 147.0 (C_{Ph}), 149.5 (d, $^{1}J = 236.0 \text{ Hz}, CF_{Ar}$), 157.3 (d, ${}^{4}J$ = 1.4 Hz, COH_{Ar}), 205.8 (d, ${}^{4}J$ = 3.3 Hz, CO) ppm. ¹⁹F NMR (235 MHz, CDCl₃): δ = –128.8 (CF) ppm. IR (Nujol): $\tilde{v} = 1681$ (w), 1637 (s), 1551 (m), 1500 (w), 1364 (s), 1292 (m), 1245 (m), 1210 (s), 1073 (w), 880 (m), 776 (m), 698 (s), 671 (w), 506 (w) cm⁻¹. MS (EI, 70 eV): m/z (%) = 306 (100) [M⁺], 291 (81), 273 (6), 228 (21), 183 (5), 153 (5), 153 (3), 133 (3), 105 (93), 77 (41). HRMS (EI): calcd. for C₂₀H₁₅FO₂ 306.10506; found 306.10517.

(2-Methoxyethyl) 6-Fluoro-3-hydroxy-5-phenylbiphenyl-2-carboxylate (5h): Starting with bis(silyl enol ether) 4c (0.484 g, 1.59 mmol), TiCl₄ (0.298 g, 1.59 mmol) in CH₂Cl₂ (3 mL) and silyl enol ether 3b (0.500 g, 1.59 mmol), 5h was isolated (0.297 g, 51%) by column chromatography (silica gel, *n*-heptane/EtOAc = 30:1→20:1) as a colourless solid (m.p. 61–62 °C). ¹H NMR (250 MHz, CDCl₃): δ = 3.01 (t, ${}^{3}J$ = 5.0 Hz, 2 H, OCH₂CH₂OCH₃), 3.18 (s, 3 H, OCH₃), 4.08 (t, ${}^{3}J$ = 5.0 Hz, 2 H, OCH₂CH₂OCH₃), 7.12 (d, ${}^{4}J_{\text{H,F}}$ = 6.7 Hz,

1 H, CH_{Ar}), 7.26 (m, 2 H, CH_{Ph}), 7.31–7.34 (m, 6 H, CH_{Ph}), 7.56–7.61 (m, 2 H, CH_{Ph}), 10.60 (s, 1 H, OH) ppm. 13 C NMR (62 MHz, CDCl₃): δ = 58.6 (OCH_{3,Ar}), 64.0 (OCH₂CH₂OCH₃), 69.1 (OCH₂-CH₂OCH₃), 111.6 (d, ^{3}J = 2.3 Hz, C_{Ar}), 118.2 (d, ^{3}J = 3.4 Hz, CH_{Ar}), 127.4 (4 CH_{Ph}), 128.5 (4 CH_{Ph}), 129.0 (2 CH_{Ph}), 131.0 (d, ^{2}J = 23.7 Hz, C_{Ar}), 134.6 (d, ^{3}J = 2.3 Hz, C_{Ph}), 135.7 (C_{Ph}), 135.8 (d, ^{2}J = 18.2 Hz, C_{Ar}), 150.0 (d, ^{1}J = 284.0 Hz, CF_{Ar}), 157.4 (d, ^{4}J = 2.0 Hz, COH_{Ar}), 169.9 (d, ^{4}J = 3.4 Hz, CO) ppm. 19 F NMR (235 MHz, CDCl₃): δ = -127.6 (CF) ppm. IR (Nujol): \tilde{v} = 1661 (s), 1612 (m), 1318 (s), 1251 (s), 1201 (s), 1134 (m), 1114 (m), 1025 (m), 778 (m), 755 (s), 700 (s) cm⁻¹. MS (EI, 70 eV): mlz (%) = 366 (59) [M⁺], 305 (20), 290 (100), 262 (37), 233 (30), 149 (4). C₂₂H₁₉FO₄ (366.39): calcd. C 72.12, H 5.23; found C 71.79, H 5.26.

Methyl 6-Fluoro-3-hydroxy-5-methylbiphenyl-2-carboxylate (5i): Starting with bis(silyl enol ether) 4a (0.620 g, 2.38 mmol), TiCl₄ (0.26 mL, 2.38 mmol) in CH₂Cl₂ (5 mL) and silyl enol ether 3c (0.600 g, 2.38 mmol), **5i** was isolated (0.247 g, 40%) by column chromatography as a yellowish solid; $R_{\rm f} = 0.22$ (silica gel, *n*-heptane/EtOAc = 5:1), m.p. 67–68 °C. ¹H NMR (500 MHz, CDCl₃): δ = 2.29 (d, ${}^{4}J_{H,F}$ = 2.2 Hz, 3 H, CH₃), 3.42 (s, 3 H, OCH₃), 6.85 (d, ${}^{4}J_{H,F} = 6.5 \text{ Hz}, 1 \text{ H, CH}_{Ar}, 7.14-7.23 \text{ (m, 2 H, CH}_{Ph}), 7.33-7.40$ (m, 3 H, CH_{Ph}), 10.61 (s, 1 H, OH) ppm. ¹³C NMR (125.8 MHz, CDCl₃): $\delta = 15.4$ (d, ${}^{3}J_{\text{Me,F}} = 3.7$ Hz, CH₃), 51.7 (OCH₃), 110.2 $(d, {}^{3}J = 1.8 \text{ Hz}, CCOOCH_{3}), 118.9 (d, {}^{3}J = 4.5 \text{ Hz}, CH_{Ar}), 127.2$ (2 CH_{Ph}) , 127.6 (2 CH_{Ph}) , 128.9 $(d, {}^{4}J = 1.8 \text{ Hz}, \text{ CH}_{Ph})$, 129.7 $(d, {}^{4}J = 1.8 \text{ Hz}, {}^{2}C_{Ph})$ $^{2}J = 19.0 \text{ Hz}, C_{Ar}$, 133.3 (d, $^{2}J = 21.0 \text{ Hz}, CCH_{3}$), 135.7 (C_{Ph}), 151.6 (d, ${}^{1}J$ = 235.5 Hz, CF), 157.4 (d, ${}^{4}J$ = 2.5 Hz, COH), 170.8 (d, 4J = 2.5 Hz, COOCH₃) ppm. ¹⁹F NMR (235 MHz, Cl₃CF): δ = -127.5 (CF) ppm. IR (Nujol): $\tilde{v} = 1670$ (s), 1622 (m), 1574 (m), 1329 (s), 1216 (s), 1194 (s), 1073 (m), 1012 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 260 (34) [M⁺], 229 (18), 228 (100), 200 (38), 171 (17). HRMS (EI, 70 eV): calcd. for C₁₅H₁₃FO₃ 260.08432; found 260.08377. C₁₅H₁₃FO₃ (260.26): calcd. C 69.22, H 5.03; found C 69.14, H 5.11.

(2-Methoxyethyl) 6-Fluoro-3-hydroxy-5-methylbiphenyl-2-carboxylate (5j): Starting with bis(silyl enol ether) 4c (0.724 g, 2.38 mmol), TiCl₄ (0.446 g, 2.38 mmol) in CH₂Cl₂ (5 mL) and silyl enol ether **3c** (0.600 g, 2.38 mmol), **5j** was isolated (0.304 g, 42%) by column chromatography (silica gel, n-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a colourless, viscous oil. ¹H NMR (250 MHz, CDCl₃): δ = 3.23 (d, ${}^{4}J_{H,F} = 1.5 \text{ Hz}, 3 \text{ H}, \text{ CH}_{3}, 2.97 \text{ (t, } {}^{3}J = 5.7 \text{ Hz}, 2 \text{ H}, \text{ OCH}_{2}\text{C}H_{2}$ OCH_3), 3.16 (s, 3 H, OCH_3), 4.04 (t, $^3J = 5.0 \text{ Hz}$, 2 H, OCH_2CH_2 -OCH₃), 6.85 (d, ${}^{4}J_{H,F}$ = 7.5 Hz, 1 H, CH_{Ar}), 7.19 (s, 1 H, CH_{Ph}), 7.26 (m, 2 H, CH_{Ph}), 7.35–7.41 (m, 2 H, CH_{Ph}), 11.60 (s, 1 H, OH) ppm. ¹³C NMR (62 MHz, CDCl₃): $\delta = 15.4$ (d, ³J = 4.3 Hz, CH_{3,Ar}), 58.6 (OCH₃), 63.8 (OCH₂CH₂OCH₃), 69.0 (OCH₂CH₂-OCH₃), 110.1 (C_{Ph}), 118.9 (d, ${}^{3}J = 4.8 \text{ Hz}$, CH_{Ar}), 127.0 (2 CH_{Ph}), 127.5 (2 CH_{Ph}), 129.0 (CH_{Ph}), 129.6 (d, ${}^{2}J$ = 23.2 Hz, C_{Ar}), 133.2 $(d, {}^{2}J = 25.5 \text{ Hz}, C_{Ar}), 135.9 (C_{Ar}), 151.6 (d, {}^{1}J = 279.7 \text{ Hz}, CF_{Ar}),$ 157.4 (d, ${}^{4}J = 3.0 \text{ Hz}$, COH_{Ar}), 170.0 (d, ${}^{4}J = 3.0 \text{ Hz}$, CO) ppm. ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -127.5$ (CF) ppm. IR (neat): \tilde{v} = 3403 (br.), 2927 (w), 1737 (s), 1667 (s), 1623 (w), 1465 (m), 1378 (m), 1240 (s), 1219 (s), 1130 (m), 1026 (w), 757 (m), 699 (w) cm⁻¹. MS (EI, 70 eV): m/z (%) = 304 (61) [M⁺], 288 (100), 200 (41), 171 (9), 152 (5). C₁₇H₁₇FO (256.32): calcd. C 67.10, H 5.63; found C 67.78, H 5.82.

1-(6-Fluoro-3-hydroxy-5-methylbiphenyl-2-yl)-1-ethanone (5k): Starting with bis(silyl enol ether) 4d (0.515 g, 2.38 mmol), TiCl₄ (0.446 g, 2.38 mmol) in CH₂Cl₂ (5 mL) and silyl enol ether 3c (0.600 g, 2.38 mmol), 5k was isolated (0.180 g, 31%) by column chromatography (silica gel, n-heptane/EtOAc = 30:1 \rightarrow 20:1) as a colourless solid (m.p. 57–59 °C). ¹H NMR (250 MHz, CDCl₃): δ =

1.75 (s, 3 H, COCH₃), 2.30 (s, 3 H, CH_{3,Ar}), 6.85 (d, ${}^4J_{\rm H,F}$ = 2.6 Hz, 1 H, CH_{Ar}), 7.26–7.33 (m, 2 H, CH_{Ph}), 7.44–7.47 (m, 3 H, CH_{Ph}), 11.80 (s, 1 H, OH) ppm. ${}^{13}{\rm C}$ NMR (62 MHz, CDCl₃): δ = 15.5 (CO CH₃), 31.6 (CH_{3,Ar}), 117.3 (CCOCH_{3,Ar}), 119.5 (d, 3J = 4.1 Hz, CH_{Ar}), 123.6 (C_{Ph}), 128.5 (2 CH_{Ph}), 128.8 (2 CH_{Ph}), 130.0 (CH_{Ph}), 133.8 (d, 2J = 22.3 Hz, CCH_{3,Ar}), 145.0 (d, 2J = 34.7 Hz, CCH_{3,Ar}), 151.2 (d, 1J = 233.7 Hz, CF_{Ar}), 157.5 (COH_{Ar}), 205.7 (COCH₃) ppm. ${}^{19}{\rm F}$ NMR (235 MHz, CDCl₃): δ = -128.4 (CF) ppm. IR (KBr): $\tilde{\rm v}$ = 3060 (m), 2928 (m), 1634 (s), 1568 (m), 1469 (s), 1361 (s), 1293 (s), 1207 (s), 1020 (m), 879 (s), 771 (s), 702 (s), 645 (m), 594 (w) cm⁻¹. MS (EI, 70 eV): mlz (%) = 244 (100) [M⁺], 229 (89), 211 (21), 183 (30), 165 (11), 152 (12), 133 (4), 115 (4), 97 (5). C₁₅H₁₃FO₂ (244.26): calcd. C 73.76, H 5.36; found C 73.66, H 5.51.

(6-Fluoro-3-hydroxy-5-methylbiphenyl-2-yl) Phenyl Ketone (51): Starting with bis(silyl enol ether) 4e (0.729 g, 2.38 mmol), TiCl₄ (0.446 g, 2.38 mmol) in CH₂Cl₂ (5 mL) and silyl enol ether 3c (0.600 g, 2.38 mmol), **51** was isolated (0.291 g, 40%) by column chromatography (silica gel, n-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a colourless solid (m.p. 151–152 °C). ¹H NMR (250 MHz, CDCl₃): $\delta = 2.36$ (t, ${}^{3}J_{H,F} = 2.2$ Hz, 3 H, CH_{3,Ar}), 6.94 (d, ${}^{4}J_{H,F} = 6.2$ Hz, 1 H, CH_{Ar}), 6.99–7.26 (m, 8 H, CH_{Ph}), 7.31–7.35 (m, 2 H, CH_{Ph}), 9.22 (s, 1 H, OH) ppm. ¹³C NMR (62 MHz, CDCl₃): δ = 15.6 (d, $^{3}J = 4.5 \text{ Hz}$, CH_{3,Ar}), 119.0 (d, $^{3}J = 4.6 \text{ Hz}$, CH_{Ar}), 120.2 (d, $^{3}J =$ 2.1 Hz, C_{Ar}), 127.5 (2CH_{Ph}), 127.6 (2CH_{Ph}), 129.0 (4CH_{Ph}), 130.9 (CH_{Ph}) , 131.9 (CH_{Ph}) , 132.0 $(d, {}^{2}J = 17.3 \text{ Hz}, C_{Ar})$, 132.5 (C_{Ar}) , 134.0 (C_{Ph}), 149.4 (C_{Ph}), 151.3 (d, ${}^{1}J = 286.2 \text{ Hz}$, CF_{Ar}), 154.9 (d, $^{4}J = 2.1 \text{ Hz}$, COH_{Ar}), 200.6 (d, $^{4}J = 4.1 \text{ Hz}$, CO) ppm. $^{19}\text{F NMR}$ (235 MHz, CDCl₃): $\delta = -113.7$ (CF) ppm. IR (Nujol): $\tilde{v} = 3389$ (s), 3270 (s), 1663 (s), 1594 (m), 1500 (w), 1326 (m), 1276 (s), 1248 (m), 1201 (m), 1073 (w), 847 (s), 690 (w) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 306 (84) [M⁺], 305 (100), 287 (4), 229 (23), 220 (6), 200 (6), 183 (6), 153 (5). HRMS (EI): calcd. for C₂₀H₁₅FO₂ 306.10506; found 306.10443.

Methyl 6-Fluoro-3-hydroxy-2'-methoxy-5-methylbiphenyl-2-carboxylate (5m): Starting bis(silyl enol ether) 4a (0.852 g, 3.3 mmol), TiCl₄ (0.620 g, 3.3 mmol) in CH₂Cl₂ (6 mL) and silyl enol ether **3d** (0.847 g, 3.0 mmol), **5m** was isolated (0.383 g, 44%) by column chromatography (silica gel, n-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a colourless solid (m.p. 105–107 °C). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.22$ (br. s, 3 H, CH₃), 3.37 (s, 3 H, OCH₃), 3.65 (s, 3 H, $COOCH_3$), 6.85 (d, ${}^4J_{H,F}$ = 8.1 Hz, 1 H, CH_{Ar}), 6.92 (dd, 3J = 7.4 Hz, ${}^{4}J$ = 0.9 Hz, 1 H, CH_{Ar}), 7.01–7.04 (m, 1 H, CH_{Ar}), 7.19– 7.23 (m, 1 H, CH_{Ar}), 7.25–7.28 (m, 1 H, CH_{Ar}), 10.57 (s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.3$ (d, ³J = 3.6 Hz, CH₃), 50.6 (OCH_{3,Ar}), 54.4 (COO*C*H₃), 109.2 (d, ${}^{3}J = 9.6$ Hz, CH_{Ar}), 110.0 (CCOOCH_{3,Ar}), 117.8 (d, ${}^{4}J = 4.2 \text{ Hz}$, CH_{Ar}), 119.0 (CH_{Ar}), 123.6 (COCH_{3,Ar}), 124.8 (d, ${}^{2}J = 19.5 \text{ Hz}$, CCF_{Ar}), 127.9, 129.2 (CH_{Ar}) , 132.1 (d, ${}^{2}J = 21.5 \text{ Hz}$, $CCH_{3,Ar}$), 150.6 (d, ${}^{1}J = 233.0 \text{ Hz}$, CF_{Ar}), 155.4 (C_{Ar}), 156.2 (d, ${}^{4}J = 2.1 \text{ Hz}$, COH_{Ar}), 169.7 (d, ${}^{4}J =$ 2.1 Hz, COOCH₃) ppm. ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -126.9$ (CF) ppm. IR (KBr): $\tilde{v} = 3012$ (w), 2844 (w), 1662 (s), 1499 (m), 1459 (s), 1378 (s), 1239 (s), 1106 (m), 1074 (m), 1025 (m), 806 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 290 (50) [M⁺], 258 (100), 241 (6), 229 (26), 187 (10), 159 (6), 133 (8). HRMS (EI): calcd. for C₁₆H₁₅FO₄ 290.09489; found 290.09473.

Methyl 6-Fluoro-3-hydroxy-2'-methoxy-4,5-dimethylbiphenyl-2-carboxylate (5n): Starting with bis(silyl enol ether) 4f (0.898 g, 3.3 mmol), TiCl₄ (0.620 g, 3.3 mmol) in CH₂Cl₂ (6 mL) and silyl enol ether 3d (0.847 g, 3.0 mmol), 5n was isolated (0.494 g, 54%) by column chromatography (silica gel, n-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a colourless solid (m.p. 98-100 °C). ¹H NMR

 $(300 \text{ MHz}, \text{CDCl}_3)$: $\delta = 2.17 \text{ (br. s, 6 H, CH}_3), 3.36 \text{ (s, 3 H, CH}_3)$ $OCH_{3,Ar}$), 3.64 (s, 3 H, $COOCH_3$), 6.84 (dd, $^3J = 8.1$ Hz, $^4J =$ 0.9 Hz, 1 H, CH_{Ar}), 6.91 (dd, ${}^{3}J = 7.4$ Hz, ${}^{4}J = 1.1$ Hz, 1 H, CH_{Ar}), 7.01–7.04 (m, 1 H, CH_{Ar}), 7.23 (ddd, ${}^{3}J$ = 8.1 Hz, ${}^{3}J$ = 8.1 Hz, ${}^{4}J$ = 1.8 Hz, 1 H, CH_{Ar}), 10.91 (s, 1 H, OH_{Ar}) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 10.7$ (d, ${}^{4}J = 2.3$ Hz, CH₃), 11.1 (d, ${}^{3}J = 5.8$ Hz, $CCH_{3,Ar}$), 50.6 (O $CH_{3,Ar}$), 54.6 (COO CH_3), 108.6 (d, $^3J = 2.9$ Hz, $CCOOCH_{3,Ar}$), 109.1, 119.0 (CH_{Ar}), 121.6 (d, ${}^{2}J = 20.4$ Hz, CCF_{Ar}), 124.0 ($COCH_{3,Ar}$), 125.0 (d, $^{3}J = 3.4 \text{ Hz}$, C_{Ar}), 124.0 (CH_{Ar}) , 129.4 (d, ${}^{4}J = 1.7 \text{ Hz}$, CH_{Ar}), 130.4 (d, ${}^{2}J = 19.8 \text{ Hz}$, FCCCH_{3,Ar}), 150.2 (d, ${}^{1}J$ = 232.2 Hz, CF_{Ar}), 154.5 (d, ${}^{3}J$ = 1.7 Hz, CCH_{3Ar}), 155.5 (COH_{Ar}), 170.3 (d, ${}^{4}J = 3.3$ Hz, $COOCH_{3}$) ppm. ¹⁹F NMR (235 MHz, CDCl₃): δ = -125.8 (CF) ppm. IR (KBr): \tilde{v} = 3016 (w), 2960 (m), 2841 (w), 1660 (s), 1621 (m), 1499 (m), 1437 (s), 1340 (s), 1248 (s), 1228 (s), 1095 (s), 903 (m), 805 (s), 749 (s), 639 (w) cm⁻¹. MS (EI, 70 eV): m/z (%) = 304 (39) [M⁺], 272 (71), 257 (100), 241 (60), 229 (22), 213 (9), 199 (10), 183 (14), 165 (12), 149 (40), 112 (16), 97 (21), 83 (30), 69 (65), 57 (64). HRMS (EI): calcd. for C₁₇H₁₇FO₄ 304.11054; found 304.10978. C₁₇H₁₇FO₄ (304.32): calcd. C 67.09, H 5.63; found C 67.22, H 5.62.

Ethyl 4-Ethyl-6-fluoro-3-hydroxy-2'-methoxy-5-methylbiphenyl-2carboxylate (50): Starting with bis(silyl enol ether) 4f (0.357 g, 1.6 mmol), TiCl₄ (0.310 g, 1.6 mmol) in CH₂Cl₂ (3 mL) and silyl enol ether **3d** (0.424 g, 1.5 mmol), **5o** was isolated (0.220 g, 33%) by column chromatography (silica gel, n-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a colourless solid (m.p. 81-83 °C). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.64$ (t, ${}^{3}J = 7.2$ Hz, 3 H, CH₂CH₃), 1.09 (t, ${}^{3}J = 7.4 \text{ Hz}$, 3 H, OCH₂CH₃), 2.19 (br. s, 3 H, CH₃), 2.68 (q, ${}^{3}J$ = 7.4 Hz, 2 H, CH_2CH_3), 3.64 (s, 3 H, $OCH_{3.Ar}$), 3.86 (q, 3J = 7.2 Hz, 2 H, COOC H_2 CH₃), 6.82 (d, $^3J = 8.4$ Hz, 1 H, CH_{Ar}), 6.86–6.91 (m, 1 H, CH_{Ar}), 6.99 (d, ${}^{3}J = 7.4$ Hz, 1 H, CH_{Ar}), 7.23 (ddd, ${}^{3}J = 8.1 \text{ Hz}$, ${}^{3}J = 7.4 \text{ Hz}$, ${}^{4}J = 1.7 \text{ Hz}$, 1 H, CH_{Ar}), 10.99 (s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 10.4$ (CH₂CH₃), 11.9 (COOCH₂CH₃), 12.0 (d, ${}^{3}J = 11.2 \text{ Hz}$, CH₃), 18.6 (d, ${}^{4}J =$ 1.6 Hz, CH₂CH₃), 54.5 (OCH_{3,Ar}), 59.7 (COOCH₂CH₃), 109.0 (d, $^{3}J = 2.9 \text{ Hz}, CCOOCH_{2}CH_{3,Ar}), 109.3, 119.1 (CH_{Ar}), 121.5 (d, {}^{2}J$ = 20.4 Hz, CCF_{Ar}), 124.0 ($C_{Ar}OCH_3$), 127.5 (CH_{Ar}), 129.4 (d, 4J = 1.7 Hz, CH_{Ar}), 129.6 (d, ${}^{2}J$ = 19.2 Hz, C_{Ar} CH₃), 130.9 (d, ${}^{3}J$ = 3.5 Hz, C_{Ar}), 150.4 (d, ${}^{1}J$ = 232.1 Hz, CF_{Ar}), 154.5 (d, ${}^{3}J$ = 1.7 Hz, C_{Ar} CH₂CH₃), 155.7 (COH_{Ar}), 169.9 (d, ${}^{4}J$ = 3.4 Hz, $COOCH_2CH_3$) ppm. ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -125.5$ (CF) ppm. IR (KBr): $\tilde{v} = 3420$ (w, br.), 3058 (w), 2970 (m), 2933 (m), 2873 (m), 1653 (s), 1615 (m), 1499 (m), 1466 (m), 1398 (s), 1326 (s), 1276 (s), 1243 (s), 1225 (s), 1080 (m), 1029 (m), 752 (s) cm⁻¹. MS (EI, 70 eV): m/z (%) = 332 (44) [M⁺], 286 (86), 271 (75), 255 (100), 228 (8), 213 (9), 199 (17), 183 (16), 152 (9), 133 (6), 69 (12). HRMS (EI): calcd. for $C_{19}H_{21}FO_4$ 332.14184; found 332.14174. C₁₉H₂₁FO₃ (316.37): calcd. C 68.66, H 6.36; found C 68.83, H 6.81.

Methyl 6-Fluoro-3-hydroxy-2'-methoxy-5-propylbiphenyl-2-carboxylate (5p): Starting with bis(silyl enol ether) 4a (0.568 g, 2.2 mmol), TiCl₄ (0.414 g, 2.2 mmol) in CH₂Cl₂ (4 mL) and silyl enol ether 3e (0.621 g, 2.0 mmol), 5p was isolated (0.229 g, 35%) by column chromatography (silica gel, *n*-heptane/EtOAc = 30:1 → 20:1) as a colourless solid (m.p. 67–70 °C). ¹H NMR (300 MHz, CDCl₃): δ = 0.83 (t, 3J = 7.2 Hz, 3 H, CH₂CH₂CH₃), 1.53 (m, 2 H, CH₂CH₂CH₃), 2.48 (br. t, 3J = 7.2 Hz, 2 H, CH₂CH₂CH₃), 3.31 (s, 3 H, OCH_{3,Ar}), 3.58 (s, 3 H, COOCH₃), 6.71 (d, ${}^4J_{\rm H,F}$ = 6.4 Hz, 1 H, CH_{Ar}), 6.79 (dd, 3J = 8.1 Hz, 4J = 0.7 Hz, 1 H, CH_{Ar}), 6.85 (ddd, 3J = 7.4, 7.4 Hz, 4J = 0.9 Hz, 1 H, CH_{Ar}), 6.97 (m, 1 H, CH_{Ar}), 7.18 (ddd, 3J = 8.1, 8.1 Hz, 4J = 1.7 Hz, 1 H, CH_{Ar}), 10.50 (s, 1 H, OH) ppm. 13 C NMR (75 MHz, CDCl₃): δ = 12.7 (CH₂CH₂CH₃), 21.6 (d, 4J = 1.1 Hz, CH₂CH₂CH₃), 30.5 (d, 3J =

2.2 Hz, $CH_2CH_2CH_3$), 50.6 (OCH₃), 54.5 (COO CH_3), 109.3 (CH_{Ar}), 109.8 (d, ${}^3J = 2.3$ Hz, $CCO_2CH_2CH_3$), 116.9 (d, ${}^3J = 2.9$ Hz, CH_{Ar}), 119.1 (CH_{Ar}), 123.7 (COCH₃), 124.9 (d, ${}^2J = 19.8$ Hz, CCF_{Ar}), 127.8 (CH_{Ar}), 129.3 (d, ${}^4J = 1.7$ Hz, CH_{Ar}), 136.5 (d, ${}^2J = 19.8$ Hz, $CCH_2CH_2CH_3$), 150.4 (d, ${}^1J = 233.8$ Hz, CF_{Ar}), 155.5 (COH_{Ar}), 156.3 (d, ${}^3J = 2.9$ Hz, C_{Ar}), 169.8 (d, ${}^4J = 2.9$ Hz, CO₂CH₃) ppm. ${}^{19}F$ NMR (235 MHz, CDCl₃): $\delta = -128.2$ (CF) ppm. IR (KBr): $\tilde{v} = 3067$ (w), 2959 (s), 2873 (m), 1669 (s), 1622 (m), 1583 (w), 1499 (m), 1435 (s), 1332 (s), 1239 (s), 1110 (m), 1028 (m), 847 (m), 752 (s) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 318 (36) [M⁺], 286 (100), 258 (29), 243 (4), 229 (5), 215 (9), 186 (4), 159 (5), 133 (3). HRMS (EI): calcd. for $C_{18}H_{19}FO_4$ 318.12619; found 318.12680.

Methyl 6-Fluoro-3-hydroxy-2'-methoxy-4-methyl-5-propylbiphenyl-2-carboxylate (5q): Starting with bis(silyl enol ether) 4f (0.598 g, 2.2 mmol), TiCl₄ (0.414 g, 2.2 mmol) in CH₂Cl₂ (4 mL) and silyl enol ether **3e** (0.621 g, 2.0 mmol), **5q** was isolated (0.228 g, 34%) by column chromatography (silica gel, n-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a colourless solid (m.p. 62-64 °C). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.84$ (t, $^{3}J = 7.4$ Hz, 3 H, CH₂CH₂CH₃), 1.44 (m, 2 H, $CH_2CH_2CH_3$), 2.13 (s, 3 H, CH_3), 2.54 (br. t, $^3J =$ 7.6 Hz, 2 H, CH₂CH₂CH₃), 3.30 (s, 3 H, OCH₃), 3.58 (s, 3 H, $COOCH_3$), 6.78 (d, ${}^4J = 7.6 Hz$, 1 H, CH_{Ar}), 6.84 (ddd, ${}^3J = 7.4$, 7.4 Hz, ${}^{4}J$ = 0.9 Hz, 1 H, CH_{Ar}), 6.98 (m, 1 H, CH_{Ar}), 7.17 (ddd, $^{3}J = 8.1, 8.1 \text{ Hz}, ^{4}J = 1.7 \text{ Hz}, 1 \text{ H}, \text{CH}_{Ar}, 10.85 \text{ (s, 1 H, OH}_{Ar})$ ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 13.5$ (d, ⁴J = 2.3 Hz, CH₃), 15.9 (CH₂CH₂CH₃), 24.5 (CH₂CH₂CH₃), 30.5 (d, $^{3}J = 3.6$ Hz, $CH_2CH_2CH_3$), 53.5 (OCH_{3 Ar}), 57.5 (COOCH₃), 111.8 (d, 3J = 2.9 Hz, CCOOCH₃), 112.2, 122.0 (CH_{Ar}), 124.6 (d, ${}^{2}J$ = 21.0 Hz, CCF_{Ar}), 127.0 ($COCH_3$), 127.6 (d, $^3J = 4.0 \text{ Hz}$, C_{Ar}), 130.6 (CH_{Ar}), 132.4 (d, ${}^{4}J$ = 1.7 Hz, CH_{Ar}), 137.8 (d, ${}^{2}J$ = 19.2 Hz, $CCH_2CH_2CH_{3.Ar}$), 153.3 (d, ${}^{1}J$ = 232.1 Hz, CF_{Ar}), 157.6 (COH_{Ar}), 158.1 (d, ${}^{3}J$ = 2.3 Hz, $CCH_{3,Ar}$), 173.3 (d, ${}^{4}J$ = 2.9 Hz, $COOCH_{3}$) ppm. ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -127.1$ (CF) ppm. IR (KBr): $\tilde{v} = 3421$ (m, br.), 3009 (w), 2956 (m), 1659 (s), 1616 (m), 1500 (w), 1411 (s), 1338 (s), 1266 (s), 1220 (s), 1137 (m), 1025 (m), 750 (m) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 332 (47) [M⁺], 300 (100), 285 (27), 269 (13), 257 (38), 241 (17), 199 (10), 133 (3). HRMS (EI): calcd. for $C_{19}H_{21}FO_4$ 332.14184; found 332.14206.

Ethyl 4-Ethyl-6-fluoro-3-hydroxy-2'-methoxy-5-propylbiphenyl-2carboxylate (5r): Starting with bis(silyl enol ether) 4f (0.499 g, 1.6 mmol), TiCl₄ (0.310 g, 1.6 mmol) in CH₂Cl₂ (3 mL) and silyl enol ether **3e** (0.467 g, 1.5 mmol), **5r** was isolated (0.286 g, 55%) by column chromatography (silica gel, n-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a colourless oil. ¹H NMR (300 MHz, CDCl₃): $\delta =$ 0.59 (t, ${}^{3}J = 7.0 \text{ Hz}$, 3 H, CH₂CH₂CH₃), 0.86 (t, ${}^{3}J = 7.2 \text{ Hz}$, 3 H, CH_2CH_3), 1.07 (t, ${}^3J = 7.4 \text{ Hz}$, 3 H, OCH_2CH_3), 1.46 (m, 2 H, $CH_2CH_2CH_3$), 2.53 (q, 3J = 7.8 Hz, 2 H, CH_2CH_3), 2.62 (br. s, 3J = 7.6 Hz, 2 H, $CH_2CH_2CH_3$), 3.58 (s, 3 H, $OCH_{3,Ar}$), 3.80 (q, 3J = 7.0 Hz, 2 H, $COOCH_2CH_3$), 6.77 (dd, 3J = 8.1 Hz, 4J = 0.7 Hz, 1 H, CH_{Ar}), 6.83 (ddd, ${}^{3}J$ = 7.4, 7.4 Hz, ${}^{4}J$ = 1.1 Hz, 1 H, CH_{Ar}), 6.96 (dd, ${}^{3}J$ = 7.4 Hz, ${}^{4}J$ = 1.1 Hz, 1 H, CH_{Ar}), 7.17 (ddd, ${}^{3}J$ = 8.1, 8.1 Hz, ${}^{4}J$ = 1.7 Hz, 1 H, CH_{Ar}), 10.91 (s, 1 H, OH) ppm. ${}^{13}C$ NMR (75 MHz, CDCl₃): δ = 14.8 (CH₂CH₃), 15.8 (CH₂CH₂CH₃), 16.0 (COOCH₂CH₃), 21.5 (d, ${}^{4}J$ = 1.6 Hz, CH₂CH₃), 25.4 (d, ${}^{4}J$ = 1.1 Hz, $CH_2CH_2CH_3$), 30.2 (d, $^3J = 3.3$ Hz, $CH_2CH_2CH_3$), 57.7 $(OCH_{3,Ar})$, 62.6 $(COOCH_2CH_3)$, 112.1 $(d, {}^3J = 2.9 Hz, CCOOCH_2 CH_{3Ar}$), 112.3, 120.0 (CH_{An}), 124.8 (d, 2J = 20.9 Hz, CCF_{Ar}), 127.4 $(C_{Ar}\text{OCH}_3)$, 130.4 (CH_{Ar}), 132.4 (d, ${}^4J = 1.7 \text{ Hz}$, CH_{Ar}), 133.4 (d, $^{3}J = 3.5 \text{ Hz}, C_{Ar}$, 137.1 (d, $^{3}J = 18.6 \text{ Hz}, C_{Ar}CH_{2}CH_{2}CH_{3}$), 153.4 (d, ${}^{1}J$ = 232.7 Hz, CF_{Ar}), 157.7 (d, ${}^{3}J$ = 1.7 Hz, CCH₂CH_{3Ar}), 158.6 (COH_{Ar}) , 172.8 (d, ${}^{4}J = 2.5 \text{ Hz}$, $COOCH_{2}CH_{3}$) ppm. ${}^{19}F$ NMR (235 MHz, CDCl₃): $\delta = -126.8$ (CF) ppm. IR (KBr): $\tilde{v} = 2958$ (s),

2870 (m), 1655 (s), 1616 (m), 1503 (m), 1468 (m), 1415 (m), 1399 (m), 1246 (s), 1233 (s), 1097 (m), 750 (s) cm⁻¹. GC-MS (EI, 70 eV): mlz (%) = 360 (56) [M⁺], 314 (100), 299 (50), 283 (67), 271 (31), 199 (8). HRMS (EI): calcd. for $C_{21}H_{25}FO_4$ 360.17314; found 360.17255.

Methyl 6-Fluoro-3-hydroxy-2',5-dimethylbiphenyl-2-carboxylate (5s): Starting with bis(silyl enol ether) 4a (0.426 g, 1.6 mmol), TiCl₄ (0.310 g, 1.6 mmol) in CH₂Cl₂ (3 mL) and silyl enol ether 3f (0.360 g, 1.5 mmol), **5s** was isolated (0.180 g, 44%) by column chromatography (silica gel, n-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a colourless, viscous oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.07$ (br. s, 3 H, CH_{3,Tol}), 2.30 (br. s, 3 H, CH₃), 3.41 (s, 3 H, COOCH₃), 6.84 (d, ${}^{4}J_{H,F}$ = 6.4 Hz, 1 H, CH_{Ar}), 6.97 (d, ${}^{3}J$ = 7.4 Hz, 1 H, CH_{Tol}), 7.21 (m, 1 H, CH_{Tol}), 7.22-7.24 (m, 2 H, CH_{Tol}), 10.79 (s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 15.8$ (d, ³J =3.6 Hz, CH_{3.Tol}), 20.1 (CH₃), 50.3 (COO*C*H₃), 110.3 (d, ${}^{3}J$ = 2.7 Hz, C_{Ar} CO₂CH₃), 118.9 (d, ^{3}J = 4.3 Hz, CH_{Ar}), 125.5, 127.8, 128.9 (CH_{Tol}), 129.4 (CCH_{3,Tol}), 129.6 (d, ${}^{4}J$ = 3.5 Hz, CH_{Tol}), 133.9 (d, ${}^{2}J$ = 21.5 Hz, CCF_{Ar}), 136.0 (d, ${}^{2}J$ = 13.9 Hz, $C_{Ar}CH_{3}$), 139.6 (C_{Tol}), 151.8 (d, ${}^{1}J$ = 232.7 Hz, CF_{Ar}), 158.2 (d, ${}^{4}J$ = 2.3 Hz, COH_{Ar}), 171.1 (d, ${}^{4}J = 2.9 \text{ Hz}$, $COOCH_{3}$) ppm. ${}^{19}F \text{ NMR}$ (235 MHz, CDCl₃): $\delta = -126.8$ (CF_{Ar}) ppm. IR (neat): $\tilde{v} = 2925$ (m), 2875 (w), 1669 (s), 1624 (w), 1437 (m), 1334 (m), 1240 (s), 1221 (s), 1077 (m), 846 (m), 755 (m), 644 (w) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 274 (29) [M⁺], 242 (100), 214 (10), 199 (11), 183 (6), 171 (16), 136 (3). HRMS (EI): calcd. for C₁₆H₁₅FO₃ 274.09997; found 274.10009.

Ethyl 4-Ethyl-6-fluoro-3-hydroxy-2',5-dimethylbiphenyl-2-carboxylate (5t): Starting with bis(silyl enol ether) 4g (0.495 g, 1.6 mmol), TiCl₄ (0.310 g, 1.6 mmol) in CH₂Cl₂ (3 mL) and silyl enol ether 3f (0.360 g, 1.5 mmol), 5s was isolated (0.185 g, 40%) by column chromatography (silica gel, n-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a colourless, viscous oil. ¹H NMR (300 MHz, CDCl₃): δ = 0.72 (t, $^{3}J = 7.0 \text{ Hz}, 3 \text{ H}, \text{CH}_{2}\text{C}H_{3}), 1.23 \text{ (t, }^{3}J = 7.4 \text{ Hz}, 3 \text{ H}, \text{CO}$ OCH₂CH₃), 2.12 (s, 3 H, CH_{3,Tol}), 2.32 (br. s, 3 H, CH_{3,Ar}), 2.82 $(q, ^3J = 7.4 \text{ Hz}, 2 \text{ H}, CH_2CH_3), 3.95 (q, ^3J = 7.0 \text{ Hz}, 2 \text{ H}, CO OCH_2CH_3$), 7.03 (d, ${}^3J = 7.4 \text{ Hz}$, 1 H, CH_{Tol}), 7.17–7.23 (m, 1 H, CH_{Tol}), 7.26–7.28 (m, 2 H, CH_{Tol}), 11.29 (s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 11.8$ (d, ${}^{3}J = 6.1$ Hz, CH_{3,Tol}), 13.2 (CH_2CH_3) , 13.5 $(COOCH_2CH_3)$, 20.0 $(d, {}^4J = 2.2 Hz, CH_2CH_3)$, 20.2 (CH_{3,Tol}), 61.3 (COO*C*H₂CH₃), 109.7 (d, ${}^{3}J = 2.9$ Hz, C_{Ar} COOCH₂CH₃), 125.5 (CH_{Tol}), 126.3 (CCH_{3,Tol}), 126.6 (C_{Tol}), 127.6 (CH_{Tol}) , 129.1 (d, ${}^{4}J = 1.1 \text{ Hz}$, CH_{Tol}), 129.5 (CH_{Tol}), 131.3 (d, ${}^{2}J$ = 19.8 Hz, CCF_{Ar}), 132.3 (d, ${}^{3}J$ = 3.5 Hz, $C_{Ar}CH_{2}CH_{3}$), 136.5 (d, $^{2}J = 19.5 \text{ Hz}, C_{Ar}\text{CH}_{3}, 151.6 \text{ (d, } ^{1}J = 231.0 \text{ Hz}, \text{CF}_{Ar}), 156.5 \text{ (d, } ^{1}J = 231.0 \text{ Hz}, \text{CF}_{Ar})$ $^{4}J = 1.7 \text{ Hz}$, COH_{Ar}), 171.1 (d, $^{4}J = 3.2 \text{ Hz}$, COOCH₂CH₃) ppm. ¹⁹F NMR (235 MHz, CDCl₃): δ = -125.5 (CF_{Ar}) ppm. IR (KBr): $\tilde{v} = 2926$ (s), 2855 (w), 1661 (s), 1616 (w), 1456 (m), 1374 (m), 1328 (m), 1272 (m), 1226 (s), 1214 (s), 1170 (w), 1038 (w), 759 (m), 734 (m), 450 (w) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 316 (39) [M⁺], 270 (43), 255 (100), 237 (11), 213 (4), 183 (12), 165 (6). HRMS (EI): calcd. for C₁₉H₂₁FO₃ 316.14692; found 316.14730.

Methyl 2'-Chloro-6-fluoro-3-hydroxy-5-methylbiphenyl-2-carboxylate (5u): Starting with bis(silyl enol ether) 4a (0.426 g, 1.6 mmol), TiCl₄ (0.310 g, 1.6 mmol) in CH₂Cl₂ (3 mL) and silyl enol ether 3g (0.429 g, 1.5 mmol), 5u was isolated (0.118 g, 26%) by column chromatography (silica gel, *n*-heptane/EtOAc = 30:1→20:1) as a reddish oil. ¹H NMR (300 MHz, CDCl₃): δ = 2.22 (br. s, 3 H, CH₃), 3.38 (s, 3 H, COOCH₃), 6.81 (d, ⁴J_{H,F} = 6.6 Hz, 1 H, CH_{Ar}), 7.06–7.08 (m, 1 H, CH_{ClPh}), 7.19–7.22 (m, 2 H, CH_{ClPh}), 7.34–7.37 (m, 1 H, CH_{ClPh}), 10.82 (s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 14.4 (d, ³J = 3.9 Hz, CH₃), 51.0 (COO*C*H₃), 108.7 (d,

 $^{3}J = 1.7 \text{ Hz}, C_{Ar}COOCH_{3}, 118.7 \text{ (d, } ^{3}J = 3.4 \text{ Hz, CH}_{Ar}), 125.2 \text{ (d, }$ ^{2}J = 19.8 Hz, CCF_{Ar}), 127.7 (3CH_{Ph}), 129.4 (d, ^{4}J = 1.1 Hz, CH_{Ph}), 132.1 (d, ${}^{3}J$ = 1.1 Hz, C_{Ph}), 132.7 (d, ${}^{2}J$ = 21.0 Hz, $C_{Ar}CH_{3}$), 133.9 (CCl_{ClPh}) , 150.4 (d, ${}^{1}J = 234.4 \text{ Hz}$, CF_{Ar}), 156.9 (d, ${}^{4}J = 2.3 \text{ Hz}$, COH_{Ar}), 169.3 (d, ${}^{4}J$ = 2.9 Hz, $COOCH_{3}$) ppm. ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -126.4$ (CF) ppm. IR (Nujol): $\tilde{v} = 1674$ (s), 1632 (w), 1376 (s), 1331 (s), 1215 (s), 1074 (m), 858 (m), 760 (s) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 296 (³⁷Cl, 3) [M⁺], 294 (35Cl, 9) [M⁺], 259 (100), 234 (15), 199 (21), 170 (24), 151 (4), 129 (4), 85 (9), 75 (4). HRMS (EI): calcd. for C₁₅H₁₂ClFO₃ ([M]⁺, ³⁵Cl) 294.04535; found 294.04604.

Methyl 2'-Chloro-6-fluoro-3-hydroxy-4,5-dimethylbiphenyl-2-carboxylate (5v): Starting with bis(silyl enol ether) 4f (0.448 g, 1.6 mmol), TiCl₄ (0.310 g, 1.6 mmol) in CH₂Cl₂ (3 mL) and silyl enol ether **3g** (0.429 g, 1.5 mmol), **5v** was isolated (0.177 g, 38%) by column chromatography (silica gel, *n*-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a colourless solid (m.p. 76–78 °C). ¹H NMR (300 MHz, CDCl₃): δ = 2.19 (br. s, 6 H, CH₃), 3.38 (s, 3 H, CO-OCH₃), 7.06-7.09 (m, 2 H, CH_{ClPh}), 7.18-7.21 (m, 2 H, CH_{ClPh}), 11.19 (s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 12.3 (d, $^{4}J = 2.9 \text{ Hz}, \text{ CH}_{3}$), 12.6 (d, $^{3}J = 5.2 \text{ Hz}, \text{ CH}_{3}$), 52.4 (COOCH₃), 109.0 (d, ${}^{3}J$ = 2.6 Hz, C_{Ar} COOCH₃), 123.8 (d, ${}^{2}J$ = 21.0 Hz, CCF_{Ar}), 126.5 (d, ${}^{4}J = 1.1 \text{ Hz}$, CH_{ClPh}), 127.5 (d, ${}^{3}J = 3.5 \text{ Hz}$, C_{Ar} CH₃), 128.9, 129.1, 131.0 (CH_{ClPh}), 132.3 (d, ${}^{2}J$ = 19.8 Hz, C_{Ar} CH₃), 133.7 (d, ${}^{3}J$ = 1.1 Hz, C_{ClPh}), 135.7 (CCl_{ClPh}), 151.5 (d, $^{1}J = 232.1 \text{ Hz}, \text{ CF}_{Ar}$), 156.7 (d, $^{4}J = 1.7 \text{ Hz}, \text{ COH}_{Ar}$), 171.4 (d, ^{4}J = 3.4 Hz, COOCH₃) ppm. ¹⁹F NMR (235 MHz, CDCl₃): δ = -125.4 (CF) ppm. GC-MS (EI, 70 eV): m/z (%) = 310 (37Cl, 5) $[M^+]$, 308 (35Cl, 15) $[M^+]$, 273 (38), 241 (100), 213 (7), 183 (15), 170 (9), 136 (5), 82 (3). HRMS (EI): calcd. for C₁₆H₁₆ClFO₃ ([M]⁺, ³⁵Cl) 308.06100; found 308.06159.

Ethyl 2'-Chloro-4-ethyl-6-fluoro-3-hydroxy-5-methylbiphenyl-2-carboxylate (5w): Starting with bis(silyl enol ether) 4g (0.494 g, 1.6 mmol), TiCl₄ (0.310 g, 1.6 mmol) in CH₂Cl₂ (3 mL) and silyl enol ether **3g** (0.405 g, 1.5 mmol), **5w** was isolated (0.192 g, 38%) by column chromatography (silica gel, *n*-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a reddish viscous oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.49$ (t, ${}^{3}J = 7.2$ Hz, 3 H, CH₂CH₃), 0.93 (t, ${}^{3}J = 7.6$ Hz, 3 H, $COOCH_2CH_3$), 2.20 (br. s, 3 H, CH_3), 2.52 (q, $^3J = 7.4$ Hz, 2 H, CH_2CH_3), 3.72 (q, ${}^3J = 7.0 \text{ Hz}$, 2 H, $COOCH_2CH_3$), 6.90–6.93 (m, 1 H, CH_{ClPh}), 6.99–7.06 (m, 2 H, CH_{ClPh}), 7.16–7.19 (m, 1 H, CH_{ClPh}), 11.12 (s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 11.8 (d, ${}^{3}J$ = 5.8 Hz, CCH₃), 13.2 (CH₂CH₃), 13.4 (COOCH₂- CH_3), 20.1 (d, ${}^4J = 2.3 \text{ Hz}$, CH_2CH_3), 61.4 (COO $CH_2CH_{3,Ar}$), 109.4 (d, ${}^{3}J$ = 2.3 Hz, C_{Ar} COOCH₂CH₃), 123.9 (d, ${}^{2}J$ = 21.0 Hz, CCF_{Ar}), 126.4, 128.8, 129.1 (CH_{ClPh}), 131.0 (d, ${}^{4}J$ = 1.7 Hz, CH_{ClPh}), 131.6 (d, ${}^{2}J = 19.2 \text{ Hz}$, $C_{Ar}CH_{3}$), 133.3 (d, ${}^{3}J = 2.9 \text{ Hz}$, C_{Ar} CH₂CH₃), 133.9 (d, ${}^{3}J$ = 1.1 Hz, C_{ClPh}), 136.1 (CCl_{ClPh}), 151.6 $(d, {}^{1}J = 232.7 \text{ Hz}, CF_{Ar}), 156.6 (d, {}^{4}J = 1.7 \text{ Hz}, COH_{Ar}), 171.0 (d,$ $^{4}J = 2.9 \text{ Hz}$, COOCH₂CH₃) ppm. $^{19}\text{F NMR}$ (235 MHz, CDCl₃): δ = -125.1 (CF) ppm. GC-MS (EI, 70 eV): m/z (%) = 338 (37Cl, 4) $[M^+]$, 336 (35Cl, 14) $[M^+]$, 301 (27), 292 (37Cl, 5), 290 (35Cl, 16), 275 (³⁷Cl, 4), 273 (³⁵Cl, 11), 255 (100), 247 (4), 207 (4), 183 (15), 170 (4). HRMS (EI): calcd. for $C_{18}H_{18}C1FO_3$ ([M]⁺, ³⁵C1) 336.09230; found 336.09156.

Methyl 4'-Chloro-6-fluoro-3-hydroxy-5-methylbiphenyl-2-carboxylate (5x): Starting with bis(silyl enol ether) 4a (0.568 g, 2.2 mmol), TiCl₄ (0.414 g, 2.2 mmol) in CH₂Cl₂ (4 mL) and silyl enol ether **3h** (0.574 g, 2.0 mmol), **5x** was isolated (0.171 g, 30%) by column chromatography (silica gel, n-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a colourless solid. ¹H NMR (300 MHz, CDCl₃): δ = 2.21 (br. s, 3 H, CH₃), 3.39 (s, 3 H, COOC H_3), 6.78 (d, ${}^4J_{H,F}$ = 6.4 Hz, 1 H, CH_{Ar}),

7.03–7.06 (m, 2 H, CH_{ClPh}), 7.27–7.30 (m, 2 H, CH_{ClPh}), 11.59 (s, 1 H, OH) ppm. 13 C NMR (75 MHz, CDCl₃): δ = 14.5 (d, ^{3}J = 3.7 Hz, CH₃), 50.8 (COO*C*H₃), 108.8 (d, ${}^{3}J$ = 1.7 Hz, C_{Ar} COOCH₃), 118.3 (d, ${}^{3}J = 3.5 \text{ Hz}$, CH_{Ar}), 126.8 (d, ${}^{4}J = 1.1 \text{ Hz}$, $2CH_{ClPh}$), 127.3 (d, ${}^{2}J = 19.2 \text{ Hz}$, CCF_{Ar}), 129.2 (2 CH_{ClPh}), 132.3 $(d, {}^{2}J = 14.5 \text{ Hz}, C_{Ar}\text{CH}_{3}), 132.6 (C_{ClPh}), 133.1 (CCl_{ClPh}), 150.5 (d,$ $^{1}J = 234.3 \text{ Hz}, \text{ CF}_{Ar}$), 156.6 (d, $^{4}J = 1.8 \text{ Hz}, \text{ COH}_{Ar}$), 169.5 (d, ^{4}J = 2.9 Hz, COOCH₃) ppm. ¹⁹F NMR (235 MHz, CDCl₃): δ = -127.4 (CF) ppm. GC-MS (EI, 70 eV): m/z (%) = 296 (37 Cl, 11) [M⁺], 294 (³⁵Cl, 31) [M⁺], 264 (³⁷Cl, 32), 262 (³⁵Cl, 100), 236 (³⁷Cl, 8), 234 (³⁵Cl, 24), 199 (11), 170 (24), 151 (3), 85 (9). HRMS (EI): calcd. for $C_{15}H_{12}CIFO_3$ ([M]⁺, ^{35}CI) 294.04535; found 294.04581.

Methyl 4'-Chloro-6-fluoro-3-hydroxy-4,5-dimethylbiphenyl-2-carboxylate (5y): Starting with bis(silyl enol ether) 4f (0.598 g, 2.2 mmol), TiCl₄ (0.414 g, 2.2 mmol) in CH₂Cl₂ (4 mL) and silyl enol ether **3h** (0.574 g, 2.0 mmol), **5y** was isolated (0.198 g, 32%) by column chromatography (silica gel, *n*-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a yellowish solid (m.p. 87-92 °C). ¹H NMR (300 MHz, CDCl₃): δ = 2.14 (br. s, 6 H, CH₃), 3.35 (s, 3 H, CO-OCH₃), 6.99–7.02 (m, 2 H, CH_{ClPh}), 7.22–7.25 (m, 2 H, CH_{ClPh}), 10.89 (s, 1 H, OH) ppm. 13 C NMR (75 MHz, CDCl₃): δ = 12.2 (d, ${}^{4}J = 2.9 \text{ Hz}, \text{CH}_{3}$), 12.5 (d, ${}^{3}J = 5.8 \text{ Hz}, \text{C}_{Ar}C\text{H}_{3}$), 52.2 (COO*C*H₃), 109.2 (d, ${}^{3}J$ = 2.9 Hz, C_{Ar} COOCH₃), 125.4 (d, ${}^{2}J$ = 19.8 Hz, CCF_{Ar}), 127.0 (d, ${}^{3}J = 3.4 \text{ Hz}$, $C_{Ar}CH_{3}$), 128.2 (2 CH_{ClPh}), 130.8 $(2CH_{ClPh})$, 132.1 (d, ${}^{2}J = 19.8 \text{ Hz}$, $C_{Ar}CH_{3}$), 133.3 (C_{ClPh}), 135.0 (CCl_{ClPh}) , 151.6 (d, ${}^{1}J = 232.7 \text{ Hz}$, CF_{Ar}), 156.3 (d, ${}^{4}J = 1.7 \text{ Hz}$, COH_{Ar}), 171.5 (d, ${}^{4}J$ = 2.9 Hz, $COOCH_{3}$) ppm. ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -126.4$ (CF) ppm. GC-MS (EI, 70 eV): m/z $(\%) = 310 (^{37}\text{Cl}, 10) [\text{M}^+], 308 (^{35}\text{Cl}, 30) [\text{M}^+], 278 (^{37}\text{Cl}, 19), 276$ (35C1, 54), 261 (7), 241 (100), 233 (6), 213 (8), 183 (15), 170 (12), 136 (5). HRMS (EI): calcd. for $C_{16}H_{14}ClFO_3$ ([M]⁺, ³⁵Cl) 308.06100; found 308.06178.

Ethyl 4'-Chloro-4-ethyl-6-fluoro-3-hydroxy-5-methylbiphenyl-2-carboxylate (5z): Starting with bis(silyl enol ether) 4g (0.660 g, 2.2 mmol), TiCl₄ (0.414 g, 2.2 mmol) in CH₂Cl₂ (4 mL) and silyl enol ether **3h** (0.574 g, 2.0 mmol), **5z** was isolated (0.297 g, 44%) by column chromatography (silica gel, *n*-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a yellowish solid (m.p. 73–75 °C). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.69$ (t, $^{3}J = 7.0$ Hz, 3 H, CH₂CH₃), 1.09 (t, ${}^{3}J = 7.4 \text{ Hz}$, 3 H, COOCH₂CH₃), 2.20 (br. s, 3 H, CH₃), 2.69 $(q, ^3J = 7.4 \text{ Hz}, 2 \text{ H}, CH_2CH_3), 3.89 (q, ^3J = 7.2 \text{ Hz}, 2 \text{ H}, CO-$ OCH₂CH₃), 7.03-7.07 (m, 2 H, CH_{ClPh}), 7.25-7.30 (m, 2 H, $\mathrm{CH}_{\mathrm{ClPh}}$), 11.01 (s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 11.7 (CH₂CH₃), 13.3 (d, ${}^{3}J$ = 9.0 Hz, CH₃), 14.3 (COOCH₂CH₃), 20.0 (d, ${}^{3}J$ = 2.3 Hz, $CH_{2}CH_{3}$), 61.5 (COO $CH_{2}CH_{3}$), 109.6 (d, ${}^{3}J$ = 2.4 Hz, C_{Ar} COOCH₂CH₃), 125.7 (d, ${}^{2}J$ = 20.4 Hz, CCF_{Ar}), 128.1 $(2 \text{CH}_{\text{ClPh}}), 130.0 (2 \text{CH}_{\text{ClPh}}), 131.3 (d, {}^{2}J = 19.2 \text{ Hz}, C_{Ar}\text{CH}_{3}),$ 133.0 (d, ${}^{3}J$ = 2.9 Hz, $C_{Ar}CH_{2}CH_{3}$), 133.3 (C_{ClPh}), 135.3 (CCl_{ClPh}), 151.7 (d, ${}^{1}J = 232.7 \text{ Hz}$, CF_{Ar}), 156.3 (d, ${}^{4}J = 1.7 \text{ Hz}$, COH_{Ar}), 171.1 (d, ${}^{4}J$ = 2.9 Hz, $COOCH_{2}CH_{3}$) ppm. ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -126.0$ (CF) ppm. IR (KBr): $\tilde{v} = 2973$ (m), 2875 (w), 1660 (s), 1616 (w), 1797 (m), 1395 (s), 1375 (s), 1331 (s), 1226 (s), 1106 (m), 1086 (s), 1017 (m), 823 (s), 810 (m), 514 (m) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 338 (³⁷Cl, 10) [M⁺], 336 (³⁵Cl, 29) [M⁺], 292 (³⁷Cl 14), 290 (³⁵Cl. 40), 275 (12), 255 (100), 237 (8), 212 (3), 183 (17), 170 (4). HRMS (EI): calcd. for C₁₈H₁₈ClFO₃ ([M]⁺, ³⁵Cl) 336.09230; found 336.09218.

Methyl 4',6-Difluoro-3-hydroxy-5-methylbiphenyl-2-carboxylate (5aa): Starting with bis(silyl enol ether) 4a (0.426 g, 1.6 mmol), TiCl₄ (0.310 g, 1.6 mmol) in CH₂Cl₂ (3 mL) and silyl enol ether 3i (0.405 g, 1.5 mmol), **5aa** was isolated (0.135 g, 32%) by column chromatography (silica gel, *n*-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a

colourless, viscous oil. ¹H NMR (300 MHz, CDCl₃): δ = 2.20 (br. s, 3 H, CH₃), 3.38 (s, 3 H, COOCH₃), 6.77 (d, ⁴J_{H,F} = 6.4 Hz, 1 H, CH_{Ar}), 6.96–7.01 (m, 2 H, CH_{FPh}), 7.04–7.09 (m, 2 H, CH_{FPh}), 10.57 (s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 14.3 (d, ³J = 3.9 Hz, CH₃), 50.8 (COOCH₃), 109.0 (d, ³J = 1.7 Hz, C_{Ar}-COOCH₃), 113.6 (d, ²J = 21.9 Hz, 2CH_{FPh}), 118.1 (d, ³J = 4.4 Hz, CH_{Ar}), 127.5 (d, ²J = 19.2 Hz, CCF_{Ar}), 129.4 (d, ⁴J = 1.7 Hz, CH_{FPh}), 132.4 (d, ²J = 21.5 Hz, C_{Ar}CH₃), 150.7 (d, ¹J = 233.8 Hz, CF_{Ar}), 156.6 (d, ⁴J = 1.7 Hz, COH_{Ar}), 161.1 (d, ¹J = 244.3 Hz, CF_{FPh}), 169.6 (d, ⁴J = 2.9 Hz, COOCH₃) ppm. ¹⁹F NMR (235 MHz, CDCl₃): δ = -127.5 (CF_{Ar}), -115.5 (CF_{FPh}) ppm. GC-MS (EI, 70 eV): m/z (%) = 278 (32) [M⁺], 246 (100), 218 (41), 201 (3), 189 (16), 170 (8), 151 (3), 133 (2), 85 (4). HRMS (EI): calcd. for C₁₅H₁₂F₂O₃ 278.07490; found 278.07532.

Methyl 4',6-Difluoro-3-hydroxy-4,5-dimethylbiphenyl-2-carboxylate (5ab): Starting with bis(silyl enol ether) 4f (0.448 g, 1.6 mmol), TiCl₄ (0.310 g, 1.6 mmol) in CH₂Cl₂ (3 mL) and silyl enol ether 3i (0.405 g, 1.5 mmol), **5ab** was isolated (0.177 g, 40%) by column chromatography (silica gel, n-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a colourless, viscous oil. ¹H NMR (300 MHz, CDCl₃): δ = 2.11 (br. s, 6 H, CH₃), 3.32 (s, 3 H, COOCH₃), 6.92–6.96 (m, 2 H, CH_{FPh}), $6.99{-}7.03~(m,\ 2~H,\ CH_{FPh}),\ 10.86~(s,\ 1~H,\ OH)$ ppm. $^{13}C~NMR$ (75 MHz, CDCl₃): $\delta = 12.2$ (d, ${}^{4}J = 2.3$ Hz, CH₃), 12.5 (d, ${}^{3}J =$ 5.7 Hz, CCH₃), 52.1 (COOCH₃), 109.5 (d, ${}^{3}J$ = 2.5 Hz, C_{Ar} $COOCH_3$), 114.9 (d, ${}^2J = 21.4 Hz$, $2CH_{FPh}$), 125.7 (d, ${}^2J =$ 20.4 Hz, CCF_{Ar}), 126.9 (d, ${}^{3}J = 3.6$ Hz, C_{FPh}), 131.0 (d, ${}^{4}J =$ 1.8 Hz, CH_{FPh}), 131.1 (d, ${}^{4}J$ = 1.2 Hz, CH_{FPh}), 132.0 (d, ${}^{2}J$ = 19.5 Hz, C_{Ar} CH₃), 132.4 (d, ${}^{3}J$ = 3.5 Hz, C_{Ar} CH₃), 151.8 (d, ${}^{1}J$ = 231.9 Hz, CF_{Ar}), 155.8 (d, ${}^{4}J$ = 1.8 Hz, COH_{Ar}), 162.5 (d, ${}^{1}J$ = 244.1 Hz, CF_{FPh}), 171.6 (d, ${}^{4}J$ = 3.1 Hz, $COOCH_{3}$) ppm. ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -126.5$ (CF_{Ar}), -115.5 (CF_{FPh}) ppm. IR (KBr): $\tilde{v} = 2926$ (m), 2875 (w), 1665 (s), 1616 (w), 1515 (s), 1440 (s), 1334 (s), 1259 (m), 1219 (s), 1174 (m), 1096 (m), 1015 (m), 833 (m), 805 (m), 586 (m) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 292 (64) [M⁺], 260 (100), 245 (81), 231 (9), 217 (43), 183 (17), 170 (5), 151 (3). HRMS (EI): calcd. for $C_{16}H_{14}F_2O_3$ 292.09055; found 292.09034.

Ethyl 4-Ethyl-4',6-difluoro-3-hydroxy-5-methylbiphenyl-2-carboxylate (5ac): Starting with bis(silyl enol ether) 4g (0.495 g, 1.6 mmol), TiCl₄ (0.310 g, 1.6 mmol) in CH₂Cl₂ (3 mL) and silyl enol ether 3i (0.405 g, 1.5 mmol), 5ac was isolated (0.170 g, 35%) by column chromatography (silica gel, n-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a colourless, viscous oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.69$ (t, $^{3}J = 7.2 \text{ Hz}, 3 \text{ H}, \text{CH}_{2}\text{C}H_{3}), 1.09 \text{ (t, }^{3}J = 7.4 \text{ Hz}, 3 \text{ H}, \text{CO-}$ OCH_2CH_3), 2.19 (br. s, 3 H, CH_3), 2.69 (q, $^3J = 7.4$ Hz, 2 H, CH_2CH_3), 3.88 (q, 3J = 7.0 Hz, 2 H, $COOCH_2CH_3$), 6.95–7.02 (m, 2 H, CH_{FPh}), 7.04–7.11 (m, 2 H, CH_{FPh}), 11.00 (s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 11.8$ (d, $^{3}J = 2.3$ Hz, CH₃), 13.4 (CH_2CH_3) , 13.5 $(COOCH_2CH_3)$, 20.0 $(d, {}^4J = 2.3 Hz, CH_2CH_3)$, 61.4 (COOCH₂CH₃), 109.8 (d, ${}^{3}J$ = 1.7 Hz, C_{Ar} COOCH₂CH₃), 114.7, 115.7 (CH_{FPh}), 125.9 (d, ${}^{2}J$ = 20.4 Hz, CCF_{Ar}), 131.0 (d, ${}^{2}J$ = 1.1 Hz, CH_{FPh}), 131.1 (d, ${}^{2}J$ = 2.3 Hz, CH_{FPh}), 131.3 (d, ${}^{2}J$ = 20.4 Hz, CCF_{Ar}), 132.7 (d, ${}^{3}J$ = 3.5 Hz, C_{FPh}), 132.8 (d, ${}^{3}J$ = 2.9 Hz, CCH_2CH_{Ar}), 151.9 (d, ${}^{1}J$ = 232.7 Hz, CF_{Ar}), 156.2 (d, ${}^{4}J$ = 1.7 Hz, COH_{Ar}), 162.5 (d, ${}^{1}J$ = 243.7 Hz, CF_{FPh}), 171.2 (d, ${}^{4}J$ = 3.5 Hz, COOCH₃) ppm. ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -126.1$ (CF_{Ar}) , -115.9 (CF_{FPh}) ppm. GC-MS (EI, 70 eV): m/z (%) = 320 (64) [M⁺], 274 (88), 256 (100), 231 (34), 201 (24), 183 (23), 170 (6), 151 (4), 133 (3). HRMS (EI): calcd. for C₁₈H₁₈F₂O₃ 320.17071; found 320.12229.

Methyl 3-Fluoro-6-hydroxy-4-methyl-2-(1-naphthyl)benzoate (5ad): Starting with bis(silyl enol ether) 4a (0.426 g, 1.6 mmol), TiCl₄

(0.310 g, 1.6 mmol) in CH_2Cl_2 (3 mL) and silyl enol ether 3j (0.454 g, 1.5 mmol), **5ad** was isolated (0.135 g, 31%) by column chromatography (silica gel, *n*-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a reddish solid (m.p. 119–121 °C). ¹H NMR (300 MHz, CDCl₃): δ = 2.25 (br. s, 3 H, CH₃), 3.01 (s, 3 H, COOCH₃), 6.88 (dd, ${}^{3}J$ = 6.6 Hz, ${}^{4}J = 0.7$ Hz, 1 H, CH_{Naph}), 7.17 (dd, ${}^{3}J = 7.0$ Hz, ${}^{4}J =$ 1.3 Hz, 1 H, CH_{Naph}), 7.29–7.32 (m, 1 H, CH_{Naph}), 7.35 (m, 1 H, CH_{Ar}), 7.37-7.39 (m, 1 H, CH_{Naph}), 7.41-7.44 (m, 1 H, CH_{Naph}), 7.76–7.81 (m, 2 H, CH_{Naph}), 10.82 (s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.5$ (d, ${}^{3}J = 3.5$ Hz, CH₃), 50.6 (COO*C*H₃), 109.7 (d, ${}^{3}J = 2.3 \text{ Hz}$, $C_{Ar}COOCH_3$), 118.4 (d, ${}^{3}J = 3.5 \text{ Hz}$, CH_{Ar}), 123.9, 124.1, 124.5, 125.0, 125.1, 126.6 (CH_{Naph}), 126.7 (d, ${}^{2}J$ = 15.7 Hz, CCF_{Ar}), 127.1 (CH_{Naph}), 131.1, 132.1, 132.5 (C_{Naph}), 132.7 (d, ${}^{2}J$ = 12.2 Hz, FCCCH_{3,Ar}), 151.1 (d, ${}^{1}J$ = 233.8 Hz, CF_{Ar}), 156.9 (d, ${}^{4}J$ = 2.3 Hz, COH_{Ar}), 169.6 (d, ${}^{4}J$ = 2.9 Hz, COOCH₃) ppm. ¹⁹F NMR (235 MHz, CDCl₃): δ = -125.6 (CF_{Ar}) ppm. IR (Nujol): $\tilde{v} = 1665$ (m), 1463 (s), 1376 (s), 1335 (m), 1225 (m), 1080 (w), 953 (w), 789 (m), 551 (w) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 310 (38) [M⁺], 278 (100), 249 (18), 233 (8), 220 (15), 155 (3), 110 (10). HRMS (EI): calcd. for C₁₉H₁₅FO₃ 310.09997; found 310.10006.

Methyl 3-Fluoro-6-hydroxy-4,5-dimethyl-2-(1-naphthyl)benzoate (5ae): Starting with bis(silyl enol ether) 4f (0.448 g, 1.6 mmol), TiCl₄ (0.310 g, 1.6 mmol) in CH₂Cl₂ (3 mL) and silyl enol ether 3j (0.454 g, 1.5 mmol), 5ae was isolated (0.180 g, 37%) by column chromatography (silica gel, n-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a reddish solid (m.p. 88–91 °C). ¹H NMR (300 MHz, CDCl₃): δ = 2.12 (br. s, 3 H, CH₃), 2.17 (br. s, 3 H, CH₃), 2.92 (s, 3 H, $COOCH_3$), 7.10 (dd, ${}^3J = 7.0 \text{ Hz}$, ${}^4J = 1.1 \text{ Hz}$, 1 H, CH_{Naph}), 7.19– 7.19 (m, 1 H, CH_{Naph}), 7.30–7.32 (m, 2 H, CH_{Naph}), 7.66–7.72 (m, 3 H, CH_{Naph}), 11.15 (s, 1 H, OH_{Ar}) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 13.1$ (d, ${}^{4}J = 2.3$ Hz, CH₃), 13.4 (d, ${}^{3}J = 5.8$ Hz, CCH_3), 52.8 ($COOCH_3$), 111.0 (d, $^3J = 2.9$ Hz, $CCOOCH_{3A_1}$), 125.7 (d, ${}^{2}J$ = 21.5 Hz, CCF_{Ar}), 126.2, 126.4, 126.7, 127.1 (CH_{Naph}) , 127.5 (d, ${}^{4}J = 1.1 \text{ Hz}$, CH_{Naph}), 127.9 (d, ${}^{3}J = 3.4 \text{ Hz}$, C_{Ar} CH₃), 128.6, 129.3 (CH_{Naph}), 133.1 (d, ${}^{2}J$ = 19.8 Hz, C_{Ar} CH₃), 133.5, 134.4, 135.3 (CH_{Naph}), 152.9 (d, ${}^{1}J$ = 231.5 Hz, CF_{Ar}), 155.5 (d, ${}^{4}J = 1.7 \text{ Hz}$, COH_{Ar}), 172.4 (d, ${}^{4}J = 2.9 \text{ Hz}$, COOCH₃) ppm. ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -124.0$ (CF) ppm. IR (Nujol): $\tilde{v} = 1664$ (s), 1457 (s), 1377 (s), 1339 (s), 1260 (s), 1226 (s), 1098 (m), 924 (w), 779 (s), 432 (w) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 324 (36) [M⁺], 292 (100), 277 (18), 249 (10), 233 (8), 220 (17), 162 (4), 110 (8). HRMS (EI): calcd. for C₂₀H₁₇FO₃ 324.11562; found 324.11546.

Ethyl 3-Ethyl-5-fluoro-2-hydroxy-4-methyl-6-(1-naphthyl)benzoate (5af): Starting with bis(silyl enol ether) 4g (0.495 g, 1.6 mmol), TiCl₄ (0.310 g, 1.6 mmol) in CH₂Cl₂ (3 mL) and silyl enol ether 3j (0.454 g, 1.5 mmol), 5af was isolated (0.223 g, 42%) by column chromatography (silica gel, n-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a reddish solid (m.p. 68–72 °C). ¹H NMR (300 MHz, CDCl₃): δ = 0.80 (t, ${}^{3}J = 7.4 \text{ Hz}$, 3 H, CH₂CH₃), 1.16 (t, ${}^{3}J = 7.5 \text{ Hz}$, 3 H, $COOCH_2CH_3$), 2.56 (br. s, 3 H, $CH_{3,Ar}$), 2.68 (q, $^3J = 7.6$ Hz, 2 H, CH_2CH_3), 3.58 (q, ${}^3J = 7.3 \text{ Hz}$, 2 H, $COOCH_2CH_3$), 7.11 (m, 1 H, CH_{Naph}), 7.21–7.26 (m, 4 H, CH_{Naph}), 7.68–7.76 (m, 2 H, CH_{Naph}), 11.10 (s, 1 H, OH_{Ar}) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 11.9 $(d, {}^{3}J = 5.6 \text{ Hz}, CH_{3.Ar}), 12.6 (CH_{2}CH_{3.Ar}), 13.5 (COOCH_{2}$ $CH_{3,Ar}$), 20.1 (d, ${}^{4}J$ = 1.6 Hz, $CH_{2}CH_{3,Ar}$), 61.1 (COOCH₂ $CH_{3,Ar}$), 110.4 (d, ${}^{3}J$ = 2.3 Hz, C_{Ar} COOCH₂CH₃), 125.0 (d, ${}^{2}J$ = 21.5 Hz, CCF_{Ar}), 125.4 (d, ${}^{4}J$ = 1.1 Hz, CH_{Naph}), 125.8, 125.9, 126.2, 126.6, 127.7, 128.4 (CH_{Naph}), 131.5 (d, ${}^{2}J$ = 19.2 Hz, C_{Ar} CH₃), 132.9 (d, $^{3}J = 2.9 \text{ Hz}, C_{Ar}\text{CH}_{2}\text{CH}_{3}, 133.1, 133.6 (C_{Naph}), 134.8 (d, {}^{4}J =$ 1.1 Hz, CCH_{3Ar}), 152.3 (d, ${}^{1}J = 231.5$ Hz, CF_{Ar}), 156.6 (d, ${}^{4}J =$ 1.7 Hz, COH_{Ar}), 171.1 (d, ${}^{4}J$ = 3.5 Hz, COOCH_{3,Ar}) ppm. ${}^{19}F$

NMR (235 MHz, CDCl₃): δ = -124.0 (CF) ppm. IR (Nujol): \tilde{v} = 1663 (s), 1460 (s), 1357 (s), 1327 (m), 1206 (m), 1109 (w), 1041 (w), 790 (m), 641 (w) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 352 (36) [M⁺], 306 (34), 291 (100), 273 (5), 220 (13), 162 (2), 110 (2). HRMS (EI): calcd. for $C_{22}H_{21}FO_3$ 352.14692; found 352.14689.

Methyl 3-Fluoro-6-hydroxy-2-(2-naphthyl)-4-propylbenzoate (5ag): Starting with bis(silyl enol ether) 4a (0.424 g, 1.6 mmol), TiCl₄ (0.310 g, 1.6 mmol) in CH₂Cl₂ (3 mL) and silyl enol ether 3k (0.495 g, 1.5 mmol), 5ag was isolated (0.143 g, 30%) by column chromatography (silica gel, n-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a colourless, viscous oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.88$ (t, $^{3}J = 7.4 \text{ Hz}, 3 \text{ H}, \text{CH}_{2}\text{CH}_{2}\text{CH}_{3}, 1.54-1.62 \text{ (m, 2 H, CH}_{2}\text{CH}_{2}\text{CH}_{3}),$ 2.53 (t, ${}^{3}J$ = 7.4 Hz, 2 H, $CH_{2}CH_{2}CH_{3}$), 3.21 (s, 3 H, $COOCH_{3}$), $6.80 \text{ (d, }^4J_{H,F} = 6.3 \text{ Hz, } 1 \text{ H, CH}_{Ar}), 7.22 \text{ (dd, CH}_{Naph}, ^3J = 8.4 \text{ Hz,}$ $^{4}J = 1.7 \text{ Hz}, 1 \text{ H}, 7.37-7.40 \text{ (m, 2 H, CH}_{Naph}), 7.58 \text{ (m, 1 H, }$ CH_{Naph}), 7.71–7.77 (m, 3 H, CH_{Naph}), 10.58 (s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.2$ (CH₂CH₂CH₃), 23.1 (d, ⁴J = 1.1 Hz, $CH_2CH_2CH_3$), 32.0 (d, 3J = 1.7 Hz, $CH_2CH_2CH_3$), 52.1 (COOCH₃), 110.7 (d, ${}^{3}J = 1.7 \text{ Hz}$, $C_{Ar}\text{COOCH}_{3}$), 118.7 (d, ${}^{4}J =$ 2.8 Hz, CH_{Naph}), 125.6 (CH_{Naph}), 126.4 (d, ${}^{3}J = 5.2$ Hz, CH_{Ar}), 127.3, 128.1, 128.4, 129.7 (CH_{Naph}), 129.9, 130.2 (C_{Naph}), 131.3 (CH_{Naph}) , 132.9 (d, ${}^{3}J = 1.7 \text{ Hz}$, C_{Naph}), 133.5 (d, ${}^{3}J = 19.2 \text{ Hz}$, CCF_{Ar}), 138.2 (d, ${}^{3}J = 19.8 \text{ Hz}$, $C_{Ar}CH_{2}CH_{2}CH_{3}$), 152.0 (d, ${}^{1}J =$ 234.4 Hz, CF_{Ar}), 158.0 (d, ${}^{4}J = 2.0$ Hz, COH_{Ar}), 171.2 (d, ${}^{4}J =$ 2.9 Hz, COOCH₃) ppm. ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -128.8$ (CF) ppm. IR (neat): $\tilde{v} = 2960$ (s), 2872 (w), 1668 (s), 1619 (w), 1437 (s), 1332 (s), 1234 (s), 1092 (m), 819 (m), 787 (m), 746 (m), 478 (m) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 338 (50) [M⁺], 306 (100), 278 (44), 249 (31), 220 (32), 207 (5), 169 (6), 125 (5), 110 (9). HRMS (EI): calcd. for $C_{21}H_{19}FO_3$ 338.13127; found 338.13136.

Methyl 3-Fluoro-6-hydroxy-5-methyl-2-(2-naphthyl)-4-propylbenzoate (5ah): Starting with bis(silyl enol ether) 4f (0.448 g, 1.6 mmol), TiCl₄ (0.310 g, 1.6 mmol) in CH₂Cl₂ (3 mL) and silyl enol ether 3k (0.495 g, 1.5 mmol), **5ah** was isolated (0.180 g, 34%) by column chromatography (silica gel, n-heptane/EtOAc = $30:1 \rightarrow 20:1$) as a colourless solid (m.p. 87–90 °C). 1 H NMR (300 MHz, CDCl₃): δ = 0.85 (t, ${}^{3}J$ = 7.4 Hz, 3 H, CH₂CH₂CH₃), 1.39–1.52 (m, 2 H, $CH_2CH_2CH_3$), 2.16 (s, 3 H, CH_3), 2.55 (br. t, $^3J = 7.4$ Hz, 2 H, $CH_2CH_2CH_3$), 3.16 (s, 3 H, COOCH₃), 7.18 (dd, $^3J = 8.3$ Hz, 4J = 1.5 Hz, 1 H, CH_{Naph}), 7.31-7.34 (m, 2 H, CH_{Naph}), 7.54 (m, 1 H, CH_{Naph}), 7.65–7.72 (m, 3 H, CH_{Naph}), 10.89 (s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 10.2$ (d, ⁴J = 2.3 Hz, CH₃), 12.6 $(CH_2CH_2CH_3)$, 21.8 (d, ${}^4J = 1.1 \text{ Hz}$, $CH_2CH_2CH_3$), 27.8 (d, 3J = 3.9 Hz, $CH_2CH_2CH_3$), 50.9 (COO CH_3), 107.9 (d, 3J = 2.9 Hz, C_{Ar} COOCH₃), 124.4, 124.5 (CH_{Naph}), 124.7 (d, ${}^{2}J$ = 19.8 Hz, CCF_{Ar}), 125.1 ($C_{Ar}CH_3$), 125.4, 126.2, 126.3, 126.3, 126.5 (CH_{Naph}) , 130.9, 131.6, 132.1 (C_{Naph}) , 134.6 $(d, {}^{2}J = 19.2 Hz$, C_{Ar} CH₂CH₂CH₃), 150.4 (d, ${}^{1}J$ = 232.7 Hz, CF_{Ar}), 154.7 (d, ${}^{4}J$ = 1.7 Hz, COH_{Ar}), 169.9 (d, ${}^{4}J = 3.5$ Hz, $COOCH_{3}$) ppm. ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -127.7$ (CF) ppm. IR (KBr): $\tilde{v} = 2959$ (m), 2871 (w), 1664 (s), 1617 (w), 1440 (s), 1414 (s), 1331 (s), 1264 (s), 1224 (s), 1115 (w), 1017 (m), 895 (w), 819 (m), 744 (m), 475 (m) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 352 (47) [M⁺], 320 (100), 305 (37), 292 (15), 277 (20), 249 (4), 220 (17), 176 (7), 146 (6), 116 (5). HRMS (EI): calcd. for C₂₂H₂₁FO₃ 352.14692; found 352.14732.

Ethyl 3-Ethyl-5-fluoro-2-hydroxy-6-(2-naphthyl)-4-propylbenzoate (5ai): Starting with bis(silyl enol ether) 4g (0.484 g, 1.6 mmol), TiCl₄ (0.310 g, 1.6 mmol) in CH₂Cl₂ (3 mL) and silyl enol ether 3k (0.495 g, 1.5 mmol), 5ai was isolated (0.204 g, 35%) by column chromatography (silica gel, n-heptane/EtOAc = 30:1 \rightarrow 20:1) as a colourless, viscous oil. ¹H NMR (300 MHz, CDCl₃): δ = 0.31 (t, ³J = 7.2 Hz, 3 H, CH₂CH₂CH₃), 0.91 (t, ³J = 7.2 Hz, 3 H,

 CH_2CH_3), 1.13 (t, ${}^3J = 7.4 \text{ Hz}$, 3 H, $COOCH_2CH_3$), 1.45–1.58 (m, 2 H, $CH_2CH_2CH_3$), 2.59 (br. t, $^3J = 8.0 \text{ Hz}$, 2 H, $CH_2CH_2CH_3$), 2.67 (t, ${}^{3}J = 8.0 \text{ Hz}$, 2 H, $CH_{2}CH_{3}$), 3.74 (q, ${}^{3}J = 7.2 \text{ Hz}$, 2 H, $COOCH_2CH_3$), 7.25 (dd, ${}^3J = 8.3 Hz$, ${}^4J = 1.5 Hz$, 1 H, CH_{Naph}), 7.35–7.40 (m, 2 H, CH_{Naph}), 7.57 (m, 1 H, CH_{Naph}), 7.68–7.79 (m, 3 H, CH_{Naph}), 11.00 (s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 13.1$ (CH₂CH₂CH₃), 14.4 (CH₂CH₃), 14.7 (CO- OCH_2CH_3), 20.0 (d, ${}^4J = 1.6 Hz$, $CH_2CH_2CH_3$), 23.9 (d, ${}^4J =$ 1.1 Hz, CH_2CH_3), 28.8 (d, $^3J = 3.3$ Hz, $CH_2CH_2CH_3$), 61.3 (CO- OCH_2CH_3), 110.2 (d, ${}^3J = 2.9$ Hz, $C_{Ar}COOCH_2CH_3$), 126.1, 126.3 (CH_{Naph}) , 127.0 (d, ${}^{2}J = 20.4 \text{ Hz}$, CCF_{Ar}), 127.3, 128.0 (CH_{Naph}) , 128.1 (d, ${}^{4}J = 1.6 \text{ Hz}$, CH_{Naph}), 128.2 (d, ${}^{4}J = 1.1 \text{ Hz}$, CH_{Naph}), 128.2 (CH_{Naph}), 132.3 (d, ${}^{3}J = 3.5 \text{ Hz}$, $C_{Ar}\text{CH}_{2}\text{CH}_{3}$), 132.8, 133.4 (C_{Naph}) , 134.3 (d, ${}^{4}J$ = 1.1 Hz, C_{Naph}), 135.9 (d, ${}^{2}J$ = 18.6 Hz, $FCCCH_2CH_2CH_{3,Ar}$), 152.1 (d, ${}^{1}J = 232.7 \text{ Hz}$, CF_{Ar}), 156.5 (d, ${}^{4}J$ = 1.7 Hz, COH_{Ar}), 171.3 (d, ${}^{4}J$ = 3.5 Hz, $COOCH_{2}CH_{3}$) ppm. ${}^{19}F$ NMR (235 MHz, CDCl₃): $\delta = -127.4$ (CF) ppm. IR (neat): $\tilde{v} =$ 2964 (s), 2873 (m), 1660 (s), 1613 (m), 1507 (m), 1416 (s), 1373 (s), 1328 (s), 1257 (s), 1243 (s), 1210 (s), 1164 (m), 1030 (m), 819 (m), 749 (s), 477 (m) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 380 (65) [M⁺], 334 (100), 305 (10), 291 (39), 273 (37), 246 (5), 176 (5), 152 (3), 131 (3), 116 (3). HRMS (EI): calcd. for C₂₄H₂₅FO₃ 380.17822; found 380.17793.

General Procedure for the Synthesis of Fluorinated Biaryl Lactones 6: To a CH₂Cl₂ solution of 5 was added BBr₃ (4.0 equiv.) at 0 °C. The solution was warmed to 20 °C during 18 h. To the solution was added an aqueous solution of KOtBu (0.1 M), and the solution was stirred for 15 min. The organic and the aqueous layers were separated and the latter was extracted with CH₂Cl₂. The combined organic layers were dried (Na₂SO₄), filtered, and the filtrate was concentrated in vacuo. The product was purified by chromatography (silica gel; *n*-heptane/EtOAc = 20:1).

10-Fluoro-7-hydroxy-9-methyl-6*H*-benzo[*c*]chromen-6-one (6a): Starting with 5m (0.060 g, 0.21 mmol) in CH_2Cl_2 (5 mL), BBr_3 (0.207 g, 0.83 mmol) and KOtBu (10 mL, 0.1 M aqueous solution), **6a** was isolated as a colourless solid (0.046 g, 91%). ¹H NMR (300 MHz, CDCl₃): δ = 2.33 (br. s, 3 H, CH₃), 6.81 (d, ${}^{4}J_{H,F}$ = 5.9 Hz, 1 H, CH_{Ar}), 7.24-7.26 (m, 1 H, CH_{Ar}), 7.28 (m, 1 H, CH_{Ar}), 7.38–7.43 (m, 1 H, CH_{Ar}), 8.35–8.39 (m, 1 H, CH_{Ar}), 11.21 (s, 1 H, OH) ppm. ¹³C NMR (62 MHz, CDCl₃): $\delta = 15.7$ (d, ³J =6.2 Hz, CH₃), 103.4 (d, ${}^{3}J = 3.7$ Hz, CCO_{Ar}), 115.4 (d, ${}^{3}J = 5.2$ Hz, CH_{Ar}), 117.2 (CH_{Ar}), 118.3 (d, ${}^{3}J = 4.9 Hz$, CH_{Ar}), 120.5 (d, ${}^{3}J =$ 11.2 Hz, C_{Ar}), 125.2 (d, ${}^{4}J$ = 2.5 Hz, CH_{Ar}), 127.4 (d, ${}^{2}J$ = 22.9 Hz, C_{Ar}), 130.3 (d, ${}^{4}J = 2.5 \text{ Hz}$, CH_{Ar}), 136.8 (d, ${}^{2}J = 20.5 \text{ Hz}$, C_{Ar} CH₃), 149.9 (CO_{Ar}), 150.5 (d, ${}^{1}J$ = 241.1 Hz, CF_{Ar}), 158.1 (d, $^{4}J = 2.5 \text{ Hz}$, COH_{Ar}), 164.5 (d, $^{4}J = 3.1 \text{ Hz}$, CO) ppm. $^{19}\text{F NMR}$ (235 MHz, CDCl₃): $\delta = -126.7$ (CF_{Ar}) ppm. IR (KBr): $\tilde{v} = 2954$ (w), 2853 (w), 1672 (s), 1607 (m), 1455 (w), 1432 (w), 1278 (m), 1206 (s), 1104 (m), 1065 (m), 758 (s) cm⁻¹. MS (EI, 70 eV): m/z (%) $= 244 (100) [M^{+}], 229 (17), 216 (11), 196 (9), 159 (9), 133 (12), 69$ (5), 57 (4). HRMS (EI): calcd. for C₁₄H₁₉FO₃ 244.05302; found 244.05258.

10-Fluoro-7-hydroxy-8,9-dimethyl-6*H*-benzo[*c*]chromen-6-one (6b): Starting with **5n** (0.060 g, 0.20 mmol) in CH₂Cl₂ (5 mL), BBr₃ (0.197 g, 0.78 mmol) and KO*t*Bu (10 mL, 0.1 m aqueous solution), **6b** was isolated as a colourless solid (0.043 g, 84%), m.p. 151–154 °C. ¹H NMR (250 MHz, CDCl₃): δ = 2.21 (s, 3 H, CH₃), 2.28 (br. s, 3 H, CH₃), 7.25–7.28 (m, 2 H, CH_{Ar}), 7.36–7.42 (m, 1 H, CH_{Ar}), 8.35–8.40 (m, 1 H, CH_{Ar}), 11.60 (s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 11.7 (d, ⁴*J* = 2.2 Hz, CH₃), 12.3 (d, ³*J* = 7.8 Hz, CH₃), 102.5 (d, ³*J* = 5.2 Hz, CCO_{Ar}), 116.3 (d, ³*J* = 5.2 Hz, C_{Ar}), 117.2 (CH_{Ar}), 117.7 (d, ²*J* = 12.8 Hz, *C*CF_{Ar}), 125.2

(CH_{Ar}), 126.3 (d, ${}^{3}J$ = 4.0 Hz, C_{Ar} CH₃), 127.4 (CH_{Ar}), 129.8 (d, ${}^{4}J$ = 2.3 Hz, CH_{Ar}), 135.3 (d, ${}^{2}J$ = 19.2 Hz, C_{Ar} CH₃), 149.8 (CO_{Ar}), 150.3 (d, ${}^{1}J$ = 241.1 Hz, CF_{Ar}), 156.4 (d, ${}^{4}J$ = 1.7 Hz, COH_{Ar}), 165.1 (d, ${}^{4}J$ = 3.4 Hz, CO) ppm. 19 F NMR (235 MHz, CDCl₃): δ = -125.4 (CF_{Ar}) ppm. IR (KBr): δ = 2962 (m), 2925 (m), 2854 (w), 1677 (s), 1622 (w), 1606 (m), 1440 (s), 1335 (m), 1270 (s), 1179 (s), 1095 (s), 1228 (s), 1022 (m), 799 (s), 757 (s) cm⁻¹. GC-MS (EI, 70 eV): mlz (%) = 258 (100) [M⁺], 243 (25), 229 (4), 215 (3), 199 (3), 183 (4), 170 (4), 152 (3). HRMS (EI): calcd. for C₁₅H₁₁FO₃ 258.06867; found 258.06807.

8-Ethyl-10-fluoro-7-hydroxy-9-methyl-6*H*-benzo[*c*]chromen-6-one (6c): Starting with 50 (0.060 g, 0.18 mmol) in CH₂Cl₂ (5 mL), BBr₃ (0.180 g, 0.72 mmol) and KOtBu (10 mL, 0.1 м aqueous solution), 6c was isolated as a colourless solid (0.037 g, 75%), m.p. 119-121 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.10$ (t, $^{3}J = 7.4$ Hz, 3 H, CH_2CH_3), 2.34 (br. s, 3 H, CH_3), 2.74 (q, $^3J = 7.2 \text{ Hz}$, 2 H, CH₂CH₃), 7.19 (m, 1 H, CH_{Ar}), 7.29-7.30 (m, 1 H, CH_{Ar}), 7.37-7.43 (m, 1 H, CH_{Ar}), 8.39–8.43 (m, 1 H, CH_{Ar}), 11.60 (s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 10.7$ (d, ³J = 8.7 Hz, CH₃), 11.9 (CH₂CH₃), 18.5 (d, ${}^{4}J = 2.3 \text{ Hz}$, CH₂CH₃), 103.4 (d, ${}^{3}J =$ 4.4 Hz, CCO_{Ar}), 115.5 (d, $^{3}J = 5.2$ Hz, C_{Ar}), 116.3 (CH_{Ar}), 117.1 $(d, {}^{2}J = 12.8 \text{ Hz}, CCF_{Ar}), 124.2, 126.5 (CH_{Ar}), 128.9 (d, {}^{4}J =$ 2.3 Hz, CH_{Ar}), 131.3 (d, ${}^{3}J$ = 3.5 Hz, C_{Ar} CH₂CH₃), 133.8 (d, ${}^{2}J$ = 14.9 Hz, C_{Ar} CH₃), 148.0 (CO_{Ar}), 148.3 (d, ${}^{1}J$ = 241.0 Hz, CF_{Ar}), 155.4 (d, ${}^{4}J$ = 1.7 Hz, COH_{Ar}), 164.4 (d, ${}^{4}J$ = 3.4 Hz, CO) ppm. ¹⁹F NMR (235 MHz, CDCl₃): δ = –124.7 (CF_{Ar}) ppm. IR (KBr): $\tilde{v} = 2967$ (m), 2876 (w), 1672 (s), 1608 (m), 1563 (w), 1413 (s), 1339 (s), 1287 (s), 1268 (s), 1178 (s), 1164 (s), 872 (m), 768 (s), 738 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 272 (42) [M⁺], 257 (100), 229 (2), 170 (4), 152 (3), 133 (2). HRMS (EI): calcd. for C₁₆H₁₃FO₃ 272.08432; found 272.08386.

10-Fluoro-7-hydroxy-9-propyl-6*H*-benzo[*c*]chromen-6-one (6d): Starting with 5p (0.148 g, 0.46 mmol) in CH₂Cl₂ (8 mL), BBr₃ (0.465 g, 1.85 mmol) and KOtBu (20 mL, 0.1 M aqueous solution), 6d was isolated as a colourless solid (0.060 g, 47%), m.p. 88–90 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.93$ (t, ³J = 7.2 Hz, 3 H, $CH_2CH_2CH_3$), 1.57–1.70 (m, 2 H, $CH_2CH_2CH_3$), 2.65 (br. t, $^3J =$ 7.2 Hz, 2 H, $CH_2CH_2CH_3$), 6.82 (d, ${}^4J_{H,F}$ = 5.7 Hz, 1 H, CH_{Ar}), 7.24-7.26 (m, 1 H, CH_{Ar}), 7.27 (m, 1 H, CH_{Ar}), 7.37-7.43 (m, 1 H, CH_{Ar}), 8.37–8.41 (m, 1 H, CH_{Ar}), 11.22 (s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 12.7$ (CH₂CH₂CH₃), 21.7 (d, ${}^{4}J =$ 1.1 Hz, $CH_2CH_2CH_3$), 30.8 (d, $^3J = 3.9$ Hz, $CH_2CH_2CH_3$), 102.7 (d, ${}^{3}J = 4.0 \text{ Hz}$, CCO_{Ar}), 115.3 (d, ${}^{3}J = 5.2 \text{ Hz}$, C_{Ar}), 116.7 (d, ${}^{3}J$ = 3.4 Hz, CH_{Ar}), 120.0 (d, ${}^{2}J$ = 12.2 Hz, CCF_{Ar}), 124.3, 126.5, 126.8 (CH_{Ar}), 129.4 (d, ${}^{4}J$ = 1.1 Hz, CH_{Ar}), 140.3 (d, ${}^{2}J$ = 19.2 Hz, C_{Ar} CH₂CH₂CH₃), 148.5 (d, ${}^{1}J$ = 243.2 Hz, CF_{Ar}), 149.1 (CO_{Ar}), 157.4 (d, ${}^{4}J$ = 2.0 Hz, COH_{Ar}), 163.8 (d, ${}^{4}J$ = 2.9 Hz, CO) ppm. ¹⁹F NMR (235 MHz, CDCl₃): δ = –125.7 (CF) ppm. IR (KBr): \tilde{v} = 3054 (w), 2965 (m), 2870 (m), 1700 (s), 1629 (m), 1569 (m), 1447 (m), 1435 (s), 1276 (s), 1203 (s), 1106 (s), 952 (w), 756 (s), 735 (m) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 272 (100) [M⁺], 257 (10), 244 (96), 215 (21), 199 (10), 183 (3), 170 (11), 157 (7), 133 (9). HRMS (EI): calcd. for C₁₈H₁₉FO₄ 272.08432; found 272.08412.

10-Fluoro-7-hydroxy-8-methyl-9-propyl-6*H*-benzo[*c*]chromen-6-one (**6e**): Starting with **5q** (0.100 g, 0.30 mmol) in CH₂Cl₂ (8 mL), BBr₃ (0.30 g, 1.20 mmol) and KO*t*Bu (10 mL, 0.1 m aqueous solution), **6e** was isolated as a colourless solid (0.052 g, 60 %). ¹H NMR (300 MHz, CDCl₃): δ = 0.95 (t, 3J = 7.2 Hz, 3 H, CH₂CH₂CH₃), 1.44–1.60 (m, 2 H, CH₂CH₂CH₃), 2.14 (s, 3 H, CH₃), 2.70 (br. t, 3J = 7.6 Hz, 2 H, CH₂CH₂CH₃), 7.23 (m, 1 H, CH_{Ar}), 7.25 (m, 1 H, CH_{Ar}), 7.33–7.39 (m, 1 H, CH_{Ar}), 8.46–8.78 (m, 1 H, CH_{Ar}), 11.60 (s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 10.4

(d, 4J = 2.2 Hz, CH₃), 13.1 (CH₂CH₂CH₃), 21.5 (d, 4J = 1.9 Hz, CH₂CH₂CH₃), 27.7 (d, 3J = 5.4 Hz, CH₂CH₂CH₃), 101.7 (d, 3J = 5.2 Hz, CCO_{Ar}), 115.4 (d, 3J = 5.2 Hz, C_{Ar}), 116.2 (CH_{Ar}), 116.9 (d, 2J = 12.8 Hz, CCF_{Ar}), 124.2 (CH_{Ar}), 125.4 (d, 3J = 4.0 Hz, C_{Ar}CH₃), 126.5 (CH_{Ar}), 128.8 (d, 4J = 2.3 Hz, CH_{Ar}), 138.7 (d, 2J = 18.0 Hz, C_{Ar}CH₂CH₂CH₃), 148.9 (CO_{Ar}), 149.4 (d, 4J = 241.4 Hz, CF_{Ar}), 155.8 (d, 4J = 1.7 Hz, COH_{Ar}), 164.2 (d, 4J = 3.4 Hz, CO) ppm. ¹⁹F NMR (235 MHz, CDCl₃): δ = -126.9 (CF) ppm. IR (KBr): \tilde{v} = 2968 (s), 2926 (s), 2853 (m), 1678 (s), 1604 (m), 1456 (m), 1426 (s), 1339 (m), 1281 (s), 1178 (s), 1119 (m), 871 (m), 763 (s), 729 (m) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 286 (100) [M⁺], 271 (47), 258 (47), 243 (12), 229 (6), 215 (2), 199 (7), 183 (6), 170 (7), 152 (5), 133 (4). HRMS (EI): calcd. for C₁₇H₁₅FO₃ 286.09997; found 286.09965.

8-Ethyl-10-fluoro-7-hydroxy-9-propyl-6*H*-benzo[*c*]chromen-6-one (6f): Starting with 5r (0.124 g, 0.35 mmol) in CH₂Cl₂ (6 mL), BBr₃ (0.124 g, 0.35 mmol) and KOtBu (10 mL, 0.1 M aqueous solution), **6f** was isolated as a colourless solid (0.069 g, 67%). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.99$ (t, $^{3}J = 7.2$ Hz, 3 H, CH₂CH₂CH₃), 1.13 (t, ${}^{3}J$ = 7.2 Hz, 3 H, CH₂CH₃), 1.51–1.64 (m, 2 H, $CH_2CH_2CH_3$), 2.70 (q, ${}^3J = 8.2 \text{ Hz}$, 2 H, CH_2CH_3), 2.75 (br. t, 3J = 8.3 Hz, 2 H, $CH_2CH_2CH_3$), 7.24–7.29 (m, 2 H, CH_{Ar}), 7.36–7.42 (m, 1 H, CH_{Ar}), 8.39–8.43 (m, 1 H, CH_{Ar}), 11.62 (s, 1 H, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 12.7$ (CH₂CH₃), 13.2 $(CH_2CH_2CH_3)$, 18.5 (d, ${}^4J = 1.6 Hz$, CH_2CH_3), 22.5 (d, ${}^4J =$ 1.1 Hz, $CH_2CH_2CH_3$), 27.7 (d, $^3J = 5.8$ Hz, $CH_2CH_2CH_3$), 102.0 $(d, {}^{3}J = 4.6 \text{ Hz}, CCO_{Ar}), 115.5 (d, {}^{3}J = 5.2 \text{ Hz}, C_{Ar}), 116.3 (CH_{Ar}),$ 117.1 (d, ${}^{2}J$ = 12.8 Hz, CCF_{Ar}), 124.2, 126.5 (CH_{Ar}), 128.9 (d, ${}^{4}J$ = 1.7 Hz, CH_{Ar}), 131.1 (d, ${}^{3}J$ = 3.5 Hz, C_{Ar} CH₂CH₃), 138.3 (d, ${}^{2}J$ = 18.0 Hz, C_{Ar} CH₂CH₂CH₃), 149.0 (CO_{Ar}), 149.7 (d, ${}^{1}J$ = 242.0 Hz, CF_{Ar}), 155.8 (d, ${}^{4}J = 1.1$ Hz, COH_{Ar}), 164.4 (d, ${}^{4}J =$ 3.5 Hz, CO) ppm. ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -126.3$ (CF) ppm. IR (KBr): $\tilde{v} = 2961$ (s), 2929 (m), 2870 (m), 1686 (s), 1608 (m), 1410 (s), 1336 (m), 1278 (m), 1171 (s), 1114 (s), 1092 (m), 891 (w), 752 (s) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 300 (100) [M⁺], 285 (74), 272 (7), 257 (70), 244 (18), 229 (5), 199 (7), 183 (8), 170 (6), 152 (3), 133 (3). HRMS (EI): calcd. for C₁₈H₁₇FO₃ 300.11562; found 300.11481.

General Procedure for the Synthesis of Fluorinated Fluorenones 7: A solution of 5 (1 mmol) in concentrated sulfuric acid (12 mL) was stirred at room temperature for one hour. To the solution was added water, and it was stirred for a further 15 minutes. The organic and the aqueous layers were separated, and the latter was extracted with CH₂Cl₂. The combined organic layers were dried (Na₂SO₄), filtered, and the filtrate was concentrated in vacuo. The product was purified by chromatography (silica gel; *n*-heptane/ EtOAc = 20:1) to give 7.

7-Chloro-4-fluoro-1-hydroxy-3-methyl-9*H*-fluoren-9-one (7a): Starting with 5x (0.031 g, 0.105 mmol) and concd. sulfuric acid (1.2 mL), 7a was isolated as a yellow solid (0.021 g, 77%). ¹H NMR (300 MHz, CDCl₃): δ = 2.22 (d, ⁴*J* = 1.3 Hz, 3 H, CH₃), 6.52 (d, ³*J* = 5.9 Hz, 1 H, CH_{Ar}), 7.18 (m, 1 H, CH_{CIPh}), 7.38 (d, ³*J* = 8.0 Hz, 1 H, CH_{CIPh}), 7.52 (m, 1 H, CH_{CIPh}), 8.02 (s, 1 H, OH) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 16.0 (d, ³*J* = 4.0 Hz, CH₃), 112.3 (d, ²*J* = 24.0 Hz, *C*_{Ar}CH₃), 116.4 (d, ³*J* = 4.6 Hz, C_{CIPh}), 121.1 (CH_{CIPh}r), 124.9 (d, ⁴*J* = 1.7 Hz, CH_{CIPh}), 125.2 (d, ³*J* = 3.5 Hz, CH_{Ar}), 134.6 (CH_{CIPh}), 136.3 (C_{CIPh}), 138.4 (d, ²*J* = 19.0 Hz, C_{Ar}), 145.0 (C_{Ar}), 152.4 (C_{CIPh}), 153.8 (COH_{Ar}), 163.6 (d, ¹*J* = 250.5 Hz, CF_{Ar}), 193.7 (CO) ppm. ¹⁹F NMR (235 MHz, CDCl₃): δ = -131.7 (CF_{Ar}) ppm. IR (KBr): \tilde{v} = 3423 (br., m), 2973 (m), 2851 (w), 1698 (s), 1636 (w), 1605 (m), 1456 (m), 1310 (m), 1270 (m), 1180 (s), 1088 (m), 793 (m), 580 (w) cm⁻¹. GC-MS (EI,

70 eV): m/z (%) = 264 (³⁷Cl, 34) [M⁺], 262 (³⁵Cl, 100) [M⁺], 235 (³⁷Cl, 3), 233 (³⁵Cl, 8), 199 (13), 170 (23), 151 (3), 131 (3), 99 (6), 85 (9). HRMS (EI): calcd. for $C_{14}H_8CIFO_2$ ([M]⁺, ³⁵Cl) 262.01914; found 262.01891.

7-Chloro-4-fluoro-1-hydroxy-2,3-dimethyl-9*H*-fluoren-9-one (7b): Starting with 5y (0.036 g, 0.12 mmol) and concd. sulfuric acid (1.39 mL), **7a** was isolated as a yellow solid (0.024 g, 75%). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.06$ (s, 3 H, CH₃), 2.12 (br. s, 3 H, CH₃), 7.33 (dd, ${}^{3}J$ = 8.0 Hz, ${}^{4}J$ = 1.9 Hz, 1 H, CH_{ClPh}), 7.42 (m, 1 H, CH_{ClPh}), 7.46 (d, ${}^{3}J = 1.8 \text{ Hz}$, 1 H, CH_{ClPh}), 8.32 (s, 1 H, OH) ppm. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 11.5$ (d, ⁴J = 1.7 Hz, CH₃), 12.5 (d, ${}^{3}J = 5.2 \text{ Hz}$, CH₃), 115.4 (d, ${}^{3}J = 5.2 \text{ Hz}$, $C_{Ar}\text{CH}_{3}$), 123.5 (d, ${}^{2}J$ = 17.4 Hz, C_{Ar} CH₃), 124.7, 125.2 (CH_{ClPh}), 129.3 (d, $^{4}J = 2.3 \text{ Hz}, C_{\text{ClPh}}$, 134.7 (d, $^{2}J = 28.5 \text{ Hz}, C_{\text{Ar}}$), 134.9 (CH_{ClPh}), 136.0 (C_{ClPh}), 136.2 (d, ${}^{3}J = 5.8 \text{ Hz}$, C_{ClPh}), 140.1 (C_{Ar}), 150.5 (d, $^{1}J = 244.9 \text{ Hz}, \text{ CF}_{Ar}$), 152.5 (COH_{Ar}), 194.3 (CO) ppm. $^{19}\text{F NMR}$ (235 MHz, CDCl₃): $\delta = -129.5$ (CF_{Ar}) ppm. IR (KBr): $\tilde{v} = 3414$ (br., s), 2923 (m), 2852 (m), 1696 (s), 1636 (w), 1604 (m), 1453 (s), 1382 (w), 1288 (s), 1274 (s), 1170 (s), 1078 (m), 1021 (m), 878 (w), 793 (m), 743 (m), 629 (m) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 278 (³⁷Cl, 37) [M⁺], 276 (³⁵Cl, 100) [M⁺], 263 (³⁷Cl, 12), 261 (³⁵Cl, 40), 235 (³⁷Cl, 3), 233 (³⁵Cl, 10), 213 (5), 207 (23), 183 (17), 170 (11), 138 (6), 91 (11). HRMS (EI): calcd. for C₁₅H₁₀ClFO₂ ([M]⁺, 35Cl) 276.03479; found 276.03481.

4,7-Difluoro-1-hydroxy-2,3-dimethyl-9*H*-fluoren-9-one (7c). Starting with 5ab (0.078g, 0.27 mmol) and concd. sulfuric acid (3.2 mL), 7c was isolated as a yellow solid (0.069 g, 74%). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.00$ (s, 3 H, CH₃), 2.01 (d, ${}^{4}J_{H,F} = 2.1$ Hz, 3 H, CH₃), 7.00 (ddd, ${}^{3}J$ = 8.5, 8.7 H, ${}^{4}J$ = 2.5 Hz, 1 H, CH_{FPh}), 7.14 (dd, ${}^{3}J$ = 7.2 Hz, ${}^{4}J$ = 2.4 Hz, 1 H, CH_{FPh}), 7.38 (dd, ${}^{3}J$ = 8.1 Hz, ${}^{4}J$ = 2.5 Hz, 1 H, CH_{FPh}), 8.24 (s, 1 H, OH) ppm. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 11.4$ (d, ${}^{4}J = 1.7$ Hz, CH₃), 12.4 (d, ${}^{3}J = 5.8$ Hz, CH₃), 112.0 (d, ${}^{2}J$ = 22.7 Hz, CH_{FPh}), 115.8 (d, ${}^{3}J$ = 5.2 Hz, C_{Ar} CH₃), 121.1 (d, ${}^{2}J$ = 22.7 Hz, C_{Ar} CH₃), 123.5 (d, ${}^{3}J$ = 18.6 Hz, CH_{FPh}), 125.3 (CH_{FPh}), 128.5 (d, ${}^{3}J$ = 1.1 Hz, C_{FPh}), 136.0 (d, ${}^{2}J$ = 16.3 Hz, C_{Ar}), 136.7 (d, ${}^{3}J = 8.1 \text{ Hz}$, C_{FPh}), 137.6 (d, ${}^{3}J = 1.7 \text{ Hz}$, C_{Ar}), 150.2 (d, ${}^{1}J$ = 244.3 Hz, CF_{FPh}), 152.4 (COH_{Ar}), 163.3 (d, ${}^{1}J$ = 248.4 Hz, CF_{Ar}), 194.0 (d, 4J = 2.3 Hz, CO) ppm. ${}^{19}F$ NMR (235 MHz, CDCl₃): $\delta = -131.1$ (CF_{Ar}), -111.9 (CF_{FPh}) ppm. GC-MS (EI, 70 eV): m/z (%) = 260 (100) [M⁺], 245 (51), 231 (7), 217 (13), 201 (9), 183 (14), 130 (4).

2-Ethyl-4,7-difluoro-1-hydroxy-3-methyl-9*H*-fluoren-9-one (7d): Starting with 5ac (0.037 mg, 0.12 mmol) and coned. sulfuric acid (1.38 mL), **7d** was isolated as a yellow solid (0.022 g, 69%). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.05$ (t, $^{3}J = 7.4$ Hz, 3 H, CH₂CH₃), 2.16 (s, 3 H, CH₃), 2.57 (q, ${}^{3}J$ = 7.4 Hz, 2 H, CH₂CH₃), 7.06 (ddd, $^{3}J = 8.5, 8.5 \text{ Hz}, ^{4}J = 2.4 \text{ Hz}, 1 \text{ H}, \text{CH}_{\text{FPh}}), 7.20 \text{ (dd, } ^{3}J = 5.1 \text{ Hz},$ $^{4}J = 0.3 \text{ Hz}, 1 \text{ H}, \text{ CH}_{\text{FPh}}), 7.48 \text{ (dd, } ^{3}J = 8.1 \text{ Hz}, ^{4}J = 3.6 \text{ Hz}, 1 \text{ H},$ CH_{FPh}), 8.31 (s, 1 H, OH) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 9.5 (CH₂CH₃), 11.2 (CH₃), 17.0 (d, ${}^{4}J$ = 2.3 Hz, CH₂CH₃), 109.6 $(d, {}^{2}J = 23.3 \text{ Hz}, CH_{FPh}), 113.8 (C_{Ar}CH_{2}CH_{3}), 118.8 (d, {}^{2}J =$ 22.7 Hz, CH_{FPh}), 121.4 (d, ${}^{4}J$ = 16.3 Hz, $CCH_{3,FPh}$), 123.2 (CH_{FPh}), 126.3 (C_{Ar}), 133.1 (d, $^2J = 17.4$ Hz, C_{Ar}), 134.6 (C_{FPh}), 135.4 (C_{FPh}), 148.1 (d, ${}^{1}J$ = 244.3 Hz, C_{FPh}), 150.1 (COH_{Ar}), 161.0 (d, ${}^{1}J$ = 248.4 Hz, CF_{Ar}), 191.9 (CO) ppm. 19 F NMR (235 MHz, CDCl₃): $\delta = -129.8$ (CF_{Ar}), -111.8 (CF_{FPh}) ppm. IR (KBr): $\tilde{v} =$ 3445 (br., m), 2975 (w), 2939 (m), 2852 (w), 1684 (s), 1603 (w), 1485 (m), 1265 (m), 1095 (m), 837 (w), 598 (w) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 274 (43) [M⁺], 259 (100), 231 (6), 201 (8), 183 (7), 122 (2). HRMS (EI): calcd. for $C_{16}H_{12}FO_2$ 274.07999; found 274.07954.

Acknowledgments

Financial support from the State of Pakistan (HEC scholarship to I. H. and M. A. Y.), and from the State of Mecklenburg-Vorpommern (scholarship to M. L.) is gratefully acknowledged.

- [1] a) Fluorine in Bioorganic Chemistry (Eds.: R. Filler, Y. Kobayasi, L. M. Yagupolskii), Elsevier, Amsterdam, 1993; b) R. Filler, Fluorine Containing Drugs in Organofluorine Chemicals and their Industrial Application, Pergamon, New York, 1979, chapter 6; c) M. Hudlicky, Chemistry of Organic Compounds, Ellis Horwood, Chichester, 1992; d) P. Kirsch, Modern Fluoroorganic Chemistry, Wiley-VCH, Weinheim, 2004; e) R. D. Chambers, Fluorine in Organic Chemistry, Blackwell Publishing CRC Press, 2004.
- [2] See also: a) T. Ryckmanns, L. Balancon, O. Berton, C. Genicot, Y. Lamberty, B. Lallemand, P. Passau, N. Pirlot, L. Quéré, P. Talaga, *Bioorg. Med. Chem. Lett.* 2002, 12, 261; b) M. S. Malamas, J. Sredy, C. Moxham, A. Katz, W. Xu, R. McDevitt, F. O. Adebayo, D. R. Sawicki, L. Seestaller, D. Sullivan, J. R. Taylor, J. Med. Chem. 2000, 43, 1293; c) A. J. Ciha, P. G. Ruminski, J. Agric. Food Chem. 1991, 39, 2072.
- [3] a) H. A. Albrecht, G. Beskid, N. H. Georgopapadakou, D. D. Keith, F. M. Konzelmann, D. L. Pruess, P. L. Rossman, C. C. Wei, J. G. Christenson, J. Med. Chem. 1991, 34, 2857; b) H. A. Albrecht, G. Beskid, J. G. Christenson, K. H. Deitcher, N. H. Georgopapadakou, D. D. Keith, F. M. Konzelmann, D. L. Pruess, C. C. Wie, J. Med. Chem. 1994, 37, 400; c) C. W. Song, K. Y. Lee, C. D. Kim, T.-M. Chang, W. Y. Chey, J. Pharmacol. Exp. Ther. 1997, 281, 1312; d) J. J. De Voss, Z. Sui, D. L. De-Camp, R. Salto, L. M. Babe, C. S. Craik, P. R. Ortiz de Montellano, J. Med. Chem. 1994, 37, 665; e) S. Anjaiah, S. Chandrasekhar, R. Gree, Adv. Synth. Catal. 2004, 346, 1329; f) M. A. Iorio, R. T. Paszkowska, V. Frigeni, J. Med. Chem. 1987, 30, 1906
- [4] a) J. L. Popp, L. L. Musza, C. J. Barrow, P. J. Rudewicz, D. R. Houck, J. Antibiot. 1994, 47, 411; b) T. S. Chen, B. Petuch, J. MacConnell, R. White, G. Dezeny, J. Antibiot. 1994, 47, 1290; c) K. S. Lam, D. R. Schroeder, J. M. Veitch, K. L. Colson, J. A. Matson, W. C. Rose, T. W. Doyle, S. Forenza, J. Antibiot. 2001, 54, 1.
- [5] a) H. Schmidbaur, O. Kumberger, *Chem. Ber.* 1993, 126, 3; b)
 M. B. Dinger, W. Henderson, *J. Organomet. Chem.* 1998, 560, 233; c) J. Liedtke, S. Loss, C. Widauer, H. Grützmacher, *Tetrahedron* 2000, 56, 143.
- [6] See for example: a) S. Schneider, C. C. Tzschucke, W. Bannwarth, Multiphase Homogeneous Catalysis (Eds.: B. Cornils, W. A. Herrmann, I. T. Horvath, W. Leitner, S. Mecking, H. Olivier-Booubigou, D. Vogt), Wiley-VCH, Weinheim, 2005, chapter 4, p. 346; b) D. Clarke, M. A. Ali, A. A. Clifford, A. Parratt, P. Rose, D. Schwinn, W. Bannwarth, C. M. Rayner, Curr. Top. Med. Chem. 2004, 7, 729.
- [7] Reviews: a) A. Wittkopp, P. R. Schreiner, The chemistry of dienes and polyenes, Vol. 2; John Wiley & Sons Ltd, 2000; b)
 P. R. Schreiner, Chem. Soc. Rev. 2003, 32, 289. See also:; c) A. Wittkopp, P. R. Schreiner, Chem. Eur. J. 2003, 9, 407; d) C. M. Kleiner, P. R. Schreiner, Chem. Commun. 2006, 4315; e) M. Kotke, P. R. Schreiner, Synthesis 2007, 5, 779.
- [8] Review: S. B. Tsogoeva, Eur. J. Org. Chem. 2007, 1701.
- [9] Reviews: a) M. Tredwell, V. Gouverneur, Org. Biomol. Chem.
 2006, 4, 26; b) J.-A. Ma, D. Cahard, Chem. Rev. 2004, 104, 6119; c) R. P. Singh, J. M. Shreeve, Synthesis 2002, 17, 2561; d)
 S. D. Taylor, C. C. Kotoris, G. Hum, Tetrahedron 1999, 55, 12431; e) S. T. Purrington, B. S. Kagen, T. B. Patrick, Chem. Rev. 1986, 86, 997.
- [10] Reviews: a) P. T. Nyffeler, S. G. Duron, M. D. Burkart, S. P. Vincent, C.-H. Wong, Angew. Chem. 2005, 117, 196; Angew.

- Chem. Int. Ed. 2005, 44, 192; b) R. P. Singh, J. M. Shreeve, Acc. Chem. Res. 2004, 37, 31.
- [11] R. E. Banks, M. K. Besheesh, S. N. Mohialdin-Khaffaf, I. Sharif, J. Chem. Soc. Perkin Trans. 1 1996, 2069.
- [12] S. Stavber, M. Jereb, M. Zupan, Synlett 1999, 9, 1375.
- [13] For a recent example of a Fries rearrangement of 4-fluorophenol, see: S. Sebille, P. de Tullio, B. Becker, M.-H. Antoine, S. Boverie, B. Pirotte, P. Lebrun, J. Med. Chem. 2005, 48, 614.
- [14] a) G.-q. Shi, S. Cottens, S. A. Shiba, M. A. Schlosser, *Tetrahedron* 1992, 48, 10569; b) G.-q. Shi, M. Schlosser, *Tetrahedron* 1993, 49, 1445; c) T. B. Patrick, J. Rogers, K. Gorrell, *Org. Lett.* 2002, 4, 3155.
- [15] O. Lefebvre, T. Brigaud, C. Portella, Tetrahedron 1998, 54, 5939
- [16] T.-H. Chan, P. Brownbridge, J. Am. Chem. Soc. 1980, 102, 3534.
- [17] For a review of 1,3-bis(silyl enol ethers) in general, see: P. Langer, Synthesis 2002, 441.
- [18] For a review of the synthesis of carbacycles by [3+3] cyclizations of 1,3-bis(silyl enol ethers) with 1,3-dielectrophiles, see: H. Feist, P. Langer, Synthesis 2007, 327.
- [19] T. Pundt, M. Lau, I. Hussain, M. A. Yawer, H. Reinke, P. Langer, Tetrahedron Lett. 2007, 48, 2745.
- [20] S. T. Purrington, C. L. Bumgardner, N. V. Lazaridis, P. Singh, J. Org. Chem. 1987, 52, 4307.
- [21] Z.-Q. Xu, D. D. DesMarteau, Y. Gotoh, J. Chem. Soc. Chem. Commun. 1991, 179.
- [22] J.-C. Xiao, J. M. Shreeve, J. Fluorine Chem. 2005, 126, 475, and references therein.
- [23] G. A. Molander, K. O. Cameron, J. Am. Chem. Soc. 1993, 115, 830.
- [24] CCDC-656198 (for 5y) and -656199 (for 5z) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [25] W. T. L. Sidwell, H. Fritz, C. Tamm, Helv. Chim. Acta 1971, 54, 207.
- [26] C. Tamm, Arzneim.-Forsch. 1972, 22, 1776.
- [27] H. Raistrick, C. E. Stilkings, R. Thomas, *Biochemistry* 1953, 55, 421.
- [28] R. W. Pero, D. Harvan, M. C. Blois, *Tetrahedron Lett.* 1973,
- [29] J. M. Schmidt, G. B. Tremblay, M. Page, J. Mercure, M. Feher, R. Dunn-Dufault, M. G. Peter, P. R. Redden, J. Med. Chem. 2003, 46, 1289.

- [30] J. Pandey, A. K. Jha, K. Hajela, Bioorg. Med. Chem. 2004, 12, 2239.
- [31] a) J. M. Sayer, Y. Haruhiko, A. W. Wood, A. H. Conney, D. M. Jerina, J. Am. Chem. Soc. 1982, 104, 5562; b) Y. A. G. P. Gunawardana, N. S. Kumar, M. U. S. Sultanbawa, Phytochemistry 1979, 18, 1017.
- [32] a) L. R. McGee, P. N. Confalone, J. Org. Chem. 1988, 53, 3695;
 b) D. J. Hart, A. Mannino, Tetrahedron 1996, 52, 3841;
 c) C. Fischer, F. Lipata, J. J. Rohr, J. Am. Chem. Soc. 2003, 125, 7818, and references therein.
- [33] B. Appel, N. N. R. Saleh, P. Langer, Chem. Eur. J. 2006, 12, 1221.
- [34] I. Hussain, V. T. H. Nguyen, M. A. Yawer, T. T. Dang, C. Fischer, H. Reinke, P. Langer, J. Org. Chem. 2007, 72, 6255.
- [35] H. Reinke, I. Hussain, M. A. Yawer, P. Langer, unpublished results.
- [36] a) S. K. Talapatra, S. Bose, A. K. Mallik, B. Talapatra, Tetrahedron 1985, 41, 2765; b) M. V. Sargent, J. Chem. Soc. Perkin Trans. 1 1987, 2553; c) C. Fan, W. Wang, Y. Wang, G. Qin, W. Zhao, Phytochemistry 2001, 57, 1255; d) X. Y. Wu, G. W. Qin, D. J. Fan, R. S. Xu, Phytochemistry 1994, 36, 477.
- [37] a) M. J. Namkung, T. L. Fletcher, Can. J. Chem. 1967, 45, 2569; b) R. D. Chambers, D. J. Spring, Tetrahedron 1969, 25, 565; c) E. P. Kyba, S.-T. Liu, K. Chockalingam, B. R. Reddy, J. Org. Chem. 1988, 53, 3513.
- [38] L. G. Hamann, D. T. Winn, C. L. F. Pooley, C. M. Tegley, S. J. West, *Bioorg. Med. Chem. Lett.* 1998, 20, 2731.
- [39] S. Reim, M. Lau, P. Langer, Tetrahedron Lett. 2006, 47, 6903.
- [40] D. Zheglova, N. Denkov, A. I. Kol'tsov, J. Mol. Struct. 1984, 115, 371.
- [41] J. M. Hornback, M. L. Poundstone, B. Vadlamani, S. M. Graham, J. Gabay, S. T. Patton, J. Org. Chem. 1988, 53, 5597.
- [42] a) A. J. G. Baxter, J. Fuher, S. J. Teauge, Synthesis 1994, 207;
 b) C. G. Savarin, J. A. Murry, P. G. Dormer, Org. Lett. 2002, 4, 2071.
- [43] W. Freiberg, S. Schuett, C.-F. Kroeger, J. Prakt. Chem./Chem.-Ztg. 1990, 332, 256.
- [44] T. E. D'Ambra, K. G. Estep, M. R. Bell, M. A. Eissenstat, K. A. Josef, J. Med. Chem. 1992, 35, 124.
- [45] J. C. Sloop, C. L. Bumgardner, W. D. Loehle, J. Fluorine Chem. 2002, 118, 135.

Received: September 19, 2007 Published Online: November 15, 2007